

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 19AE3DCAF

Course: AERO - FLUID MECHANICS

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	<p>a) Define the following</p> <ul style="list-style-type: none"> i) Specific weight ii) Buoyancy iii) Solids and fluids iv) Newtonian and non-Newtonian fluid v) Dynamic viscosity and kinematic viscosity <p>b) If the velocity distribution over a plate is given by $u = y^2 - \frac{3}{2}y$ in which u is in m/s at a distance y meter above the plate. Determine the shear stress at $y = 0$ m, $y = 0.5$ m and $y = 1$ m. Take dynamic viscosity as 0.863 N.s/m^2.</p>	10
---	---	-----------

UNIT - II

2	<p>a) Define the following</p> <ul style="list-style-type: none"> i. Stream line ii. Path line iii. Streak line iv. Velocity potential function v. Stream function <p>b) Derive continuity equation for a 3 dimensional flow and deduce an expression considering unsteady and incompressible flow.</p>	10
---	--	-----------

OR

3	<p>a) i) Briefly describe about velocity potential function and stream function and its relations in terms of equation.</p> <p>ii) The stream function for a dimensional flow is given by $\Psi = 2xy$. Calculate the resultant velocity at P (3,4). Also, the velocity potential function ϕ.</p> <p>b) Define</p> <ul style="list-style-type: none"> i) Stream line, streak line and path line with a neat sketch ii) Lagrangian and Eulerian descriptions of fluid flow 	10
---	--	-----------

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

4 a) Differentiate between venturi meter and orifice meter with neat sketches. **10**

b) i) State and explain about the Buckingham's pi-theorem. **10**

ii) Check the dimensional homogeneity of the following common equations in the field of hydraulics

$$P_1 + \frac{1}{2} \rho V^2 + \rho g z = C$$

UNIT - IV

5 a) Write a short note on development of flow in pipes. **8**

b) Derive an expression for Darcy-Weisbach equation and Chezy's formula. **12**

UNIT - V

6 a) Find the displacement thickness, the momentum thickness and energy thickness $\frac{u}{U} = \left(\frac{y}{\delta}\right)^2$ for the velocity distribution in the boundary layer given by u Where u is the velocity at a distance y from the plate $u=U$ at $y=\delta$ and δ is boundary layer thickness. **10**

b) Explain the propagation of sound waves in different Mach regions. **10**

OR

7 a) Prove that velocity of sound $c = \sqrt{\gamma RT}$ where, R is gas constant, T is the temperature and γ is specific heat ratio. **10**

b) i) Define rotational and irrotational flows? **10**

ii) Explain the terms favorable and adverse pressure gradient. Describe flow separation phenomenon with appropriate diagram.

iii) Define Mach number and what is the significance of it?
