

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 19AE3DCAF

Course: AERO FLUID MECHANICS

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1	<p>a) Define the following</p> <ul style="list-style-type: none"> i) Solids and fluids ii) Intensive properties and extensive properties. Explain with examples iii) Mass density iv) Specific weight v) Vapour pressure and cavitation <p>b) Derive an expression for total pressure and center of pressure on an inclined surface.</p>	10
---	---	----

OR

2	<p>a) State Pascal's law and derive an expression for the following</p> <ul style="list-style-type: none"> i) Pressure at a point ii) Variation of pressure with depth <p>b) Define the following</p> <ul style="list-style-type: none"> i) Surface tension ii) Pressure iii) Capillarity iv) Buoyancy 	12
---	--	----

UNIT - II

3	<p>a) Briefly describe about velocity potential function and stream function and its relations in terms of equation.</p> <p>b) State Pascal's law and derive an expression for the following</p> <ul style="list-style-type: none"> i) Pressure at a point ii) Variation of pressure with depth 	8
---	---	---

OR

4	<p>a) Derive continuity equation for a 3 dimensional flow and deduce an expression considering unsteady and incompressible flow.</p> <p>b) Explain any five different types of flows in detail with neat sketches.</p>	10
---	--	----

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III

5 a) State and derive an expression for Bernoulli's equation. Write down all the assumptions involved in its derivation. **12**
b) Distinguish between geometric similarity and kinematic similarity. **8**

OR

6 a) Check the dimensional homogeneity for the equation **12**
$$P_1 + \frac{1}{2} \rho V^2 + \rho g z = C$$

b) Define the following **8**
i) Dimension and different types of dimensions with an example
ii) Dimensionless numbers with an example

UNIT - IV

7 a) Define Reynold's number and what is the significance of it. Use necessary sketches. **4**
b) Deduce an expression for the Hagen-Poiseuille equation considering viscous fluid flow through a circular pipe. **16**

OR

8 a) Derive an expression for Darcy-Weisbach equation with proper assumptions. **14**
b) Describe the development of flow in pipes and its significance. **6**

UNIT - V

9 a) i) Define rotational and irrotational flows? **8**
ii) Explain the terms favorable and adverse pressure gradient. Describe flow separation phenomenon with appropriate diagram.
iii) Define Mach number and what is the significance of it?
b) Analyze the following boundary layer parameters for the velocity distribution $\frac{u}{U} = 2 \left(\frac{y}{\delta} \right)$ **12**
i) Displacement thickness
ii) Momentum thickness
iii) Also calculate the ratio of momentum thickness to energy thickness (δ^*/θ)

OR

10 a) Explain the propagation of sound waves in different Mach regions. **10**
b) Prove that velocity of sound $c = \sqrt{\gamma RT}$ where, R is gas constant, T is the temperature and γ is specific heat ratio. **10**
