

B. M. S. College of Engineering, Bengaluru - 560019

Autonomous Institute Affiliated to VTU

September / October 2023 Supplementary Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 19AE3DCIAE

Course: Introduction to Aerospace Engineering

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 22.09.2023

Instructions:

1. **Draw figures, wherever necessary.**
2. **Assume suitable data wherever necessary.**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I

1. a) List down the requirements for commercial aircraft and military aircraft **8**
b) Describe the pressure, temperature, and density altitudes in an ISA. **6**
c) Write a brief account of the History of Indian Space Programs. **6**

UNIT - II

2. a) Briefly explain the nomenclature of a typical cambered airfoil. Draw a neat sketch and label the parts. **8**
b) Define thrust-to-weight ratio and wing-loading for a typical aircraft. **4**
c) Consider two different points on the surface of an airplane wing flying at 80 m/s at a standard altitude of 3 km. The pressure coefficient and flow velocity at point 1 are -1.5 and 110 m/s , respectively. The pressure coefficient at point 2 is -0.8 . Assuming incompressible flow, calculate the flow velocity at point 2. **8**

OR

3. a) Write a short note on the V-n diagram for a typical jet trainer aircraft. **8**
b) Consider a turbojet engine aircraft:

$W/S = 4000 \text{ N/m}^2$, $TSFC = 0.80$ per hour, $\text{Cruise-fuel weight fraction} = 0.3$, $AR_w = 7.2$, $e = 0.85$ & $C_{D0} = 0.016$, $V_{cruise} = 800 \text{ kmph}$.

Estimate the Max. Range and Endurance for cruise flight @ constant C_L and $H_{cruise} = 9 \text{ km}$. Assume $\sigma @ 9 \text{ km} = 0.3813$

- c) With a neat sketch, explain the concept of dynamic stability. **4**

UNIT - III

4. a) Briefly explain the various components of a typical Jet Engine. 8

b) Draw the velocity diagram for the propeller cross-section. Explain why the propeller root section has low blade setting angle than that near the tip. 7

c) A small ramjet engine is to be designed for a maximum thrust of 454 kg at sea level at a velocity of 290 m/s. If the exit velocity and pressure are 610 m/s and 1.0 atm, respectively, estimate the area of the inlet that should be designed. 5

UNIT - IV

5. a) Define Partial Pressure of a Gas. Discuss how PPO₂ varies with altitude 6

b) What is meant by the bleed air in an aircraft? Explain its significance and sources. 6

c) Discuss the fuel systems used in an aircraft. 8

OR

6. a) Discuss the principle of gyroscopic instruments. Explain any one of such instruments. 10

b) Estimate the true altitude of an aircraft, which is cruising at an altitude of 17,500 ft. The OAT is -10°C . 4

c) Define anti-icing and de-icing. What are the methods available to provide heated air to the thermal anti-icing system? 6

UNIT - V

7. a) Discuss the comprehensive space programs going on in India. 8

b) Write a short note on challenges faced during the manufacturing of fighter aircraft. 4

c) Describe the Aircraft Crashworthiness. Explain the criteria used to assess crashworthiness prospectively. 8
