

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June / July 2025 Semester End Main Examinations

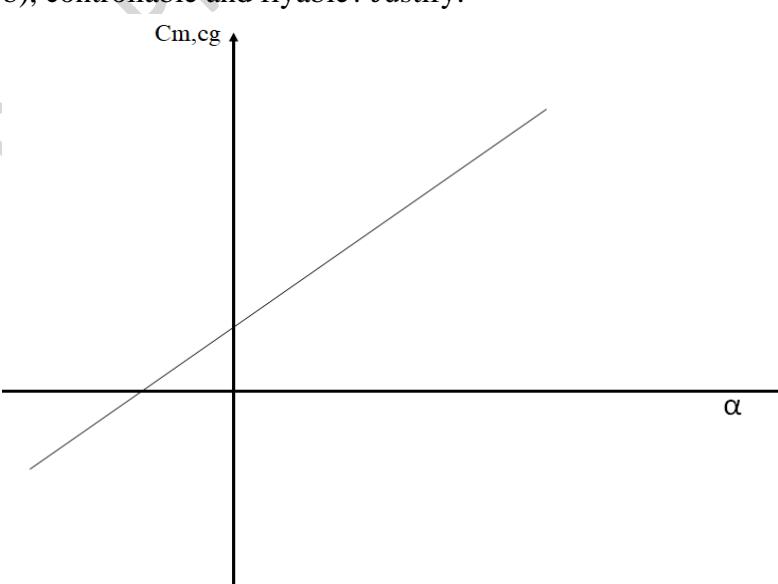
Programme: B.E.

Semester: V

Branch: AEROSPACE ENGINEERING

Duration: 3 hrs.

Course Code: 20AE5DCBFM


Max Marks: 100

Course: BASIC FLIGHT MECHANICS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define pressure drag, skin-friction drag and lift-induced drag.	CO1	PO1	6
	b)	Derive the equation for the maximum velocity in terms of maximum thrust-to-weight ratio, wing loading, and zero-lift drag coefficient.	CO1	PO1	8
	c)	Prove that $C_{D,0} = C_{D,i}$ for the thrust required for a level, unaccelerated flight, , where $C_{D,0}$ is the coefficient of parasite drag at zero-lift and $C_{D,i}$ is the lift-induced drag coefficient.	CO1	PO1	6
OR					
2	a)	Consider the jet-powered executive aircraft CJ-1 having the normal gross weight, wingspan, and wing area to be 88,250.86 N, 16.256 m, and 29.581 m ² , respectively. The maximum lift-to-drag ratio for CJ-1 is 16.9 ($C_L = 0.583$). Calculate the minimum glide angle and the maximum range measured along the ground covered by the CJ-1 in a power-off glide that starts at an altitude of 3,048 m ($\rho_\infty = 0.9048 \text{ kg/m}^3$) and 610 m ($\rho_\infty = 1.1549 \text{ kg/m}^3$). Also, calculate the equilibrium glide velocities for the same altitudes, each corresponding to the minimum glide angle.	CO1	PO2	10
	b)	Calculate $(C_L/C_D)_{max}$ and $(C_L^{3/2}/C_D)_{max}$ for propeller driven airplane (CP1) whose aspect ratio is 7.37 and the zero-lift parasite drag co-efficient is 0.025. Also, calculate $(C_L^{1/2}/C_D)_{max}$ and $(C_L/C_D)_{max}$ for the Jet airplane (CJ-1) with aspect ratio 8.93, the zero-lift parasite drag co-efficient is 0.02. The value of Oswald's efficiency factor is 0.8 in both the cases.	CO1	PO2	06
	c)	Imagine a helicopter is hovering at Suvarnabhumi airport (BKK) in Thailand, which is located at GPS coordinates 13° 41' 23.9964" N (latitude) and 100° 45' 0.4104" E (longitude). The Earth rotates counter-clockwise, allowing the helicopter to	CO1	PO3	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		reach Bangalore airport in the hovering status, located at GPS coordinates $13^{\circ} 11' 57.7644''$ N (latitude) and $77^{\circ} 42' 36.4896''$ E (longitude). Considering the approximate constant latitude coordinates for both Thailand and Bangalore Airport, can the helicopter land at Bangalore airport or nearby based on the Earth's rotation over time? Explain.			
		UNIT - II			
3	a)	Derive the expression for the distance required for the take-off of an aircraft from a levelled straight runway.	<i>CO1</i>	<i>PO2</i>	10
	b)	Write the formulae for the distance travelled along the ground during take-off and landing and draw the graphs of force versus distance along the ground based on aerodynamic and frictional force parameters.	<i>CO1</i>	<i>PO2</i>	10
		OR			
4	a)	Explain the V-n diagram with necessary equations.	<i>CO1</i>	<i>PO1</i>	10
	b)	Estimate the landing ground roll distance at sea level for the Jet powered aircraft (CJ-1) whose mass is 5603 kg with wing area 29.54 m^2 . The zero-lift drag co-efficient is 0.02. No thrust reversal is used; however, spoilers are employed such that $L=0$. The spoilers increase the zero-lift drag-coefficient by 10 percent. The fuel tanks are essentially empty, so neglect the weight of any fuel carried by the airplane. The maximum lift co-efficient, with flaps fully employed at touchdown is 2.5 and the co-efficient of rolling friction is 0.4.	<i>CO1</i>	<i>PO2</i>	10
		UNIT - III			
5	a)	Is the airplane having $C_{m,cg}$ vs α graph as shown in the figure 5 b), controllable and flyable? Justify.	<i>CO3</i>	<i>PO2</i>	05
		Figure 5(b): $C_{m,cg}$ versus α			

	b)	Describe and derive the moments about the center of gravity due to wing-tail combination.	CO3	PO2	15
		OR			
6	a)	Aerodynamic center and the neutral point should be before the center of gravity in an airfoil and airplane. Comment on the statement.	CO3	PO2	05
	b)	<p>Figure: 5(b) $C_{m,cg}$ vs α</p> <p>From the figure 5(b) mention the numbers 1 to 5 as stable, unstable and neutrally stable.</p>	CO3	PO2	05
	c)	Explain the contribution of wing to moments about the center of gravity by deriving the equations and also explain how it is applied for a wing-body configuration.	CO3	PO2	10
		UNIT - IV			
7	a)	Prove that elevator angle to trim is	CO3	PO2	10
		$\delta_{trim} = \frac{\frac{\partial C_{M,cg}}{\partial \alpha} \alpha + C_{M,0}}{V_H \frac{\partial C_{L,t}}{\partial \delta_e}}$			
	b)	Explain by deriving, what are the factors that produces hinge moment on the elevator?	CO3	PO2	10
		OR			
8		Explain how the elevator helps in changing the value of $C_{M,0}$ and hence changing the trimmed angle of attack for different flight speeds.	CO3	PO2	20
		UNIT - V			
9	a)	Draw and list the major parts of the helicopter.	CO3	PO1	05
	b)	How can you determine the performance of hovering in helicopters? What are the non-dimensional quantities that help to determine the same?	CO3	PO1	15

OR						
	10	a)	An inventor claims to have built a “flying car” that can hover, where the lifting force is provided by two ducted fans. The car weighs 1000 kg and has a 149.14 kW engine. The unducted fans are 2.13 m in diameter. Is hovering flight possible? [Hint: A ducted fan can be considered to have an effective area that is twice that of an unducted rotor.]	CO3	PO2	10
		b)	What are the functions of main and tail rotors in a helicopter?	CO3	PO1	05
		c)	Enumerate the differences between the fixed wing aircraft and the rotor wing aircraft.	CO3	PO1	05

REAPPEAR EXAMS 2024-25