

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2023 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 20AE5DCBFM

Course: Basic Flight Mechanics

Semester: V

Duration: 3 hrs.

Max Marks: 100

Date: 01.03.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) Prove that $C_{D,o} = \frac{1}{3}C_{D,i}$ for the power required for level, unaccelerated flight. **10**
 b) Explain the physical considerations for deriving the maximum range and endurance of a jet-airplane and for a propeller driven airplane. **10**

UNIT - II

2 Imagine a Boeing 747 flight sitting on a conveyor belt as wide and long as a runway. The conveyor belt is designed to exactly match the speed of the wheels moving in the opposite direction. Will the plane take-off? Justify your answers for the take-off that happens or not, from the understanding you had in your text book. **20**

OR

3 a) Write short notes on a level-turn, pull up and pull down for a flight. **12**
 b) Write short notes on V-n diagram. **08**

UNIT - III

4 a) Explain the contribution of wing to moments about the center of gravity by deriving the equations and also explain how it is applied for a wing-body configuration. **15**
 b) Prove that the neutral point is the aerodynamic center of the complete airplane. **05**

UNIT - IV

5 Explain how the elevator helps in changing the value of $C_{M,0}$ and hence changing the trimmed angle of attack for different flight speeds. **20**

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - V

6 a) Draw and describe the major parts of the helicopter. **10**

b) Derive an expression for showing the effect of induced velocity in forward flight. **10**

OR

7 a) A helicopter has the following data: **12**

Gross weight = 1363.6 kg

Main rotor radius = 4.0 m

Rotor tip speed = 207.3 m/s

Rotor Power = 205 kW

For hovering conditions at sea level, compute the following:

- (i) Rotor disk loading,
- (ii) Ideal Power loading,
- (iii) Thrust, Torque and Power coefficients,
- (iv) Figure of merit and actual power loading.

b) An inventor claims to have built a “flying car” that can hover, where the lifting force is provided by two ducted fans. The car weighs 1000 kg and has a 149.14 kW engine. The ducted fans are 2.13 m in diameter. Is hovering flight possible? **8**
[Hint: A ducted fan can be considered to have an effective area that is twice that of an unducted rotor.]
