

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

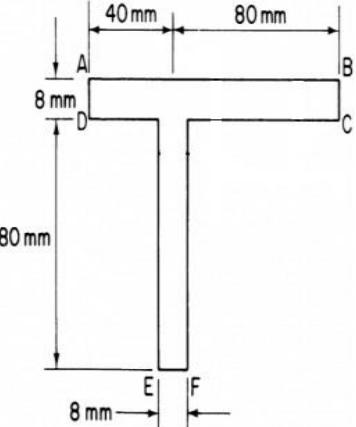
Programme: B.E.

Branch: Aerospace Engineering

Course Code: 20AE6DCAST

Course: Aerospace Structures

Semester: VI


Duration: 3 hrs.

Max Marks: 100

Date: 22.07.2023

Instructions:

1. Draw figures wherever necessary.
2. Assume suitable data wherever necessary.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Explain the following i. Parallel axis theorem ii. Perpendicular axis theorem iii. Neutral axis	<i>COI</i>	<i>PO1</i>	6
	b)	A beam having the cross-section shown in figure 1b is subjected to a bending moment of 1500 Nm in a vertical plane. Calculate the maximum direct stress due to bending stating the point at which it acts.	<i>COI</i>	<i>PO1</i> <i>PO2</i>	14
<p>Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.</p>					
UNIT - II					
2	a)	Explain the following a)Anticlastic bending b)Product of second moment of area. c)Semi-monocoque d)Shear stress e)Shear flow f)Shear center	<i>CO2</i>	<i>PO1</i>	6

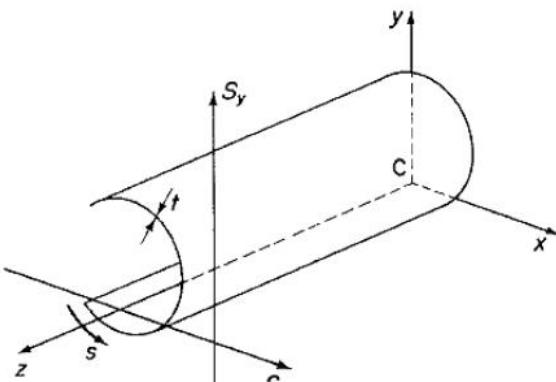
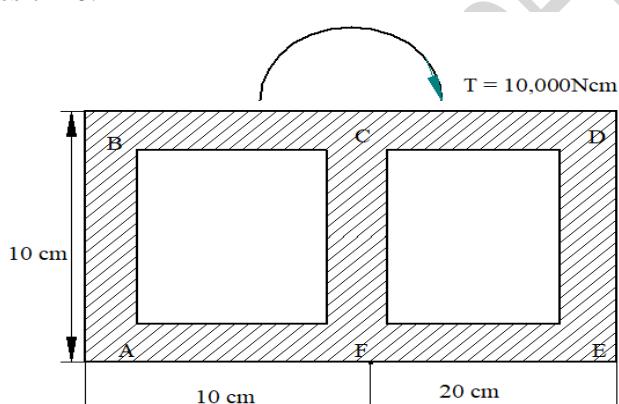


	b)	Derive the equation of shear flow for the open thin-walled section.	CO2 PO PO2	14
UNIT - III				
3	a)	Explain briefly about Bredt Batho theory.	CO3 PO1 PO2	8
	b)	Find the shear flow and twist per unit length of two tube structure as shown in Figure 3b ,Take $G = 25 \times 10^5 \text{ N/cm}^2$ and thickness $t = 0.1 \text{ mm}$	CO3 PO1 PO2	12
UNIT - IV				
4	a)	Explain briefly about buckling on thin plates.	CO4 PO1 PO2	5
	b)	Derive an expression for the buckling load of plate subjected to a compressive load N_x on four side and the unloaded edges are free.	CO4 PO1 PO2	15
		OR		
5	a)	Briefly explain the Needham's and Gerard's methods for determining the crippling stresses.	CO4 PO1 PO2	5
	b)	A thin square plate of side a and thickness t is simply supported along each edge, and has a slight initial curvature giving an initial deflected shape.	CO4 PO1 PO2	15
		$w_0 = \delta \sin \frac{\pi x}{a} \sin \frac{\pi y}{a}$		
		If the plate is subjected to a uniform compressive stress σ in the x -direction (see		

Fig (5b), find an expression for the elastic deflection w normal to the plate and also the deflection at the mid-point of the plate.

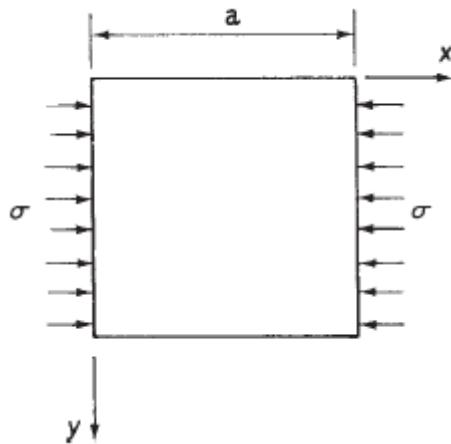


Figure 5b

UNIT - V

6 a) The fuselage of a light passenger carrying aircraft has the circular cross-section shown in Fig. below. The cross sectional area of each stringer is 100mm^2 and the vertical distances given in Figure below are to the mid-line of the section wall at the corresponding stringer position. If the fuselage is subjected to a bending moment of 200 kNm applied in the vertical plane of symmetry, at this section, calculate the direct stress distribution.

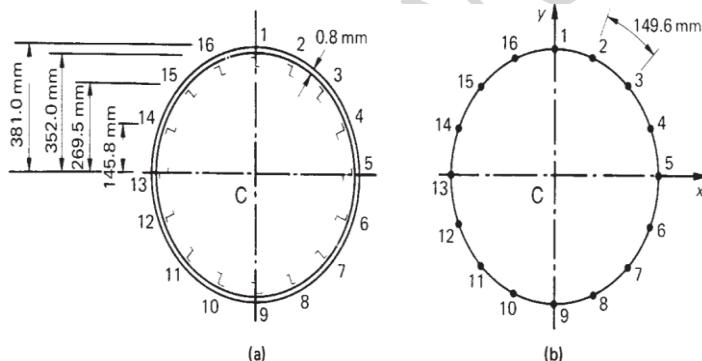


Figure 6a

b) The fuselage section shown is subjected to a bending moment of 100 kNm applied in the vertical plane of symmetry, if the section is idealized determine the direct stress in each point.

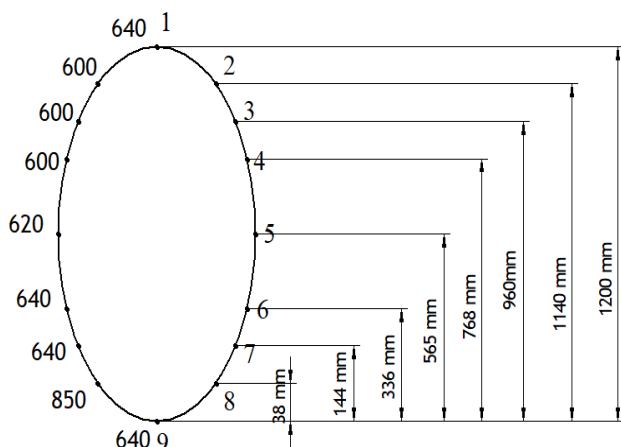
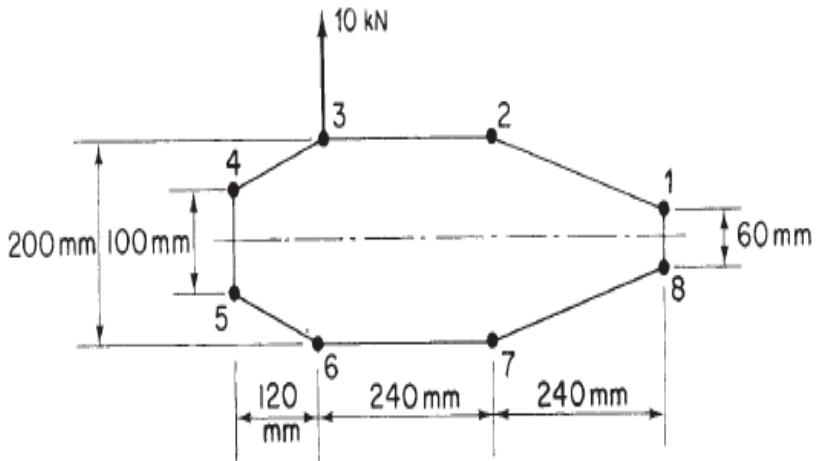
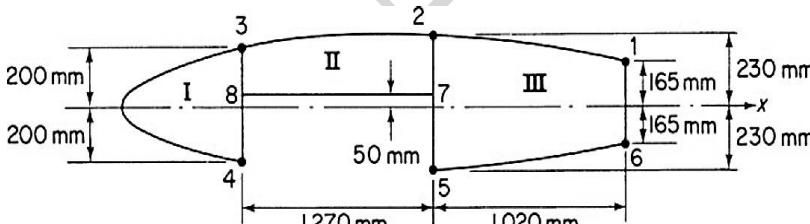


Figure 6b

COS



PO1
PO2

12

COS

PO1
PO2

08

OR					
7	a)	<p>The thin-walled single cell beam shown in Figure 7a has been idealized into a combination of direct stress carrying booms and shear stress only carrying walls. If the section supports a vertical shear load of 10 KN acting in a vertical plane through booms 3 and 6, calculate the distribution of shear flow around the section. Boom areas: $B_1 = B_8 = 200 \text{ mm}^2$, $B_2 = B_7 = 250 \text{ mm}^2$, $B_3 = B_6 = 400 \text{ mm}^2$, $B_4 = B_5 = 100 \text{ mm}^2$.</p>	<i>CO5</i>	<i>PO1</i> <i>PO2</i>	12
	b)	<p>The wing section shown in Figure 7b has been idealized such that the booms carry all the direct stresses. If the wing section is subjected to a bending moment of 300 kNm applied in a vertical plane, calculate the direct stresses in the booms.</p>	<i>CO5</i>	<i>PO1</i> <i>PO2</i>	08
