

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 20AE6DECFD

Max Marks: 100

Course: COMPUTATIONAL FLUID DYNAMICS

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What is the physical meaning of divergence of velocity? What is its relation with the continuity equation?	<i>CO1</i>	<i>PO1</i>	5
	b)	What are the physical boundary conditions for an inviscid and viscous flow when there is a flow over a wall?	<i>CO1</i>	<i>PO1</i>	10
	c)	List five applications of CFD in aerospace engineering.	<i>CO1</i>	<i>PO1</i>	5
OR					
2	a)	Transform non-conservation form of differential continuity equation into differential conservation form.	<i>CO1</i>	<i>PO1</i>	5
	b)	Derive the continuity equation for the infinitesimally small element fixed in space.	<i>CO1</i>	<i>PO1</i>	10
	c)	Define substantial derivative, local derivative and convective derivative and explain with suitable examples.	<i>CO1</i>	<i>PO2</i>	5
UNIT - II					
3	a)	Apply Cramer's rule to a quasi-linear PDE for the mathematical classification as elliptic, parabolic and hyperbolic by deriving the discriminant.	<i>CO1</i>	<i>PO1</i>	20
OR					
4	a)	Explain about the Domain and boundaries for the solution of hyperbolic equations in a 2D steady flow.	<i>CO1</i>	<i>PO1</i>	5
	b)	What type PDE is used in boundary layers? What happens when the boundary layer is not thin when the entire flow of interest is fully viscous?	<i>CO1</i>	<i>PO1</i>	5
	c)	Explain briefly on the behavior of elliptic equations and also the propagation of disturbances in a subsonic inviscid flow.	<i>CO1</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
5	a)	What is Boundary-fitted co-ordinate system? Explain.	CO2	PO1	10
	b)	Explain the disadvantages of rectangular grid. Also, how it is disadvantageous for a profile like an airfoil and how this disadvantage can be overcome?	CO2	PO1	10
OR					
6	a)	Define (i) Aspect ratio, (ii) Skewness, (iii) Grid Independence, (iv) Hybrid grid.	CO2	PO1	10
	b)	Explain the algebraic grid generation with an example. Explain briefly what quantities are necessary to solve using finite differences if numerical methods are used?	CO2	PO1	10
UNIT - IV					
7	a)	Derive the equation for Temperature distribution for a 1D steady state heat conduction starting from Taylor's series.	CO3	PO2	15
	b)	Write the advantages and disadvantages of explicit and implicit methods.	CO3	PO1	5
OR					
8	a)	Write the significance of first three terms in Taylor's series expansion.	CO3	PO1	5
	b)	Explain the methodology of Crank-Nicholson implicit differencing scheme for the governing parabolic partial differential equation with respect to space and time.	CO3	PO2	15
UNIT - V					
9	a)	Write briefly about the cell-centered and cell-vertex techniques.	CO3	PO1	08
	b)	Derive an expression for calculating the average value of u for the successive nodes using the Governing Equation for 1D finite volume method.	CO3	PO2	12
OR					
10	a)	Enumerate the differences between the finite difference method and the finite volume method.	CO3	PO2	10
	b)	Write the similarities and differences between cell-centered and cell-vertex techniques.	CO3	PO2	10
