

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 20AE6DECFD

Course: Computational Fluid Dynamics

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 19.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	<i>Marks</i>	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define CFD and list its applications.	<i>CO2</i>	<i>PO1</i>	5	
		b)	What is divergence of velocity? Explain its physical meaning.	<i>CO2</i>	<i>PO1</i>	5	
		c)	Derive an integral and conservative form of continuity equation for a finite control volume, fixed in space with fluid flowing through it.	<i>CO2</i>	<i>PO2</i>	10	
OR							
2	a)	List the physical boundary conditions used in fluid flow and heat transfer problems. Explain any two types with the help of sketch.			<i>CO2</i>	<i>PO1</i>	5
	b)	What are the different flow models used in CFD for a continuum fluid? Explain the flow model with finite control volume moving with the fluid.			<i>CO2</i>	<i>PO1</i>	5
	c)	Derive the energy in a partial differential and non-conservative form for an infinitesimally small fluid element moving with flow.			<i>CO2</i>	<i>PO2</i>	10
UNIT - II							
3	a)	Explain the general behavior of elliptical equation and List the types of flow governed by elliptical equation.			<i>CO2</i>	<i>PO1</i>	5
	b)	Classify the mathematical behavior of the equation $\frac{\partial^2 \Phi}{\partial x^2} - \frac{\partial^2 \Phi}{\partial y^2} = 0$ using Cramer's Rule:			<i>CO2</i>	<i>PO2</i>	5
	c)	Derive the general conditions for classifying the partial differential equations using Cramer's rule.			<i>CO2</i>	<i>PO1</i>	10

UNIT - III						
4	a)	What is mesh quality? How the assessment of mesh quality is made?	CO3	PO1	5	
	b)	Write the difference between structured and unstructured grids.	CO3	PO1	5	
	c)	Define the following: (i) Hybrid grid (ii) Grid independence (iii) Aspect ratio (iv) Skewness	CO3	PO1	10	
UNIT - IV						
5	a)	Explain the forward and backward finite difference methods with the help of suitable grids.	CO1	PO1	5	
	b)	Compare explicit and implicit approaches.	CO1	PO1	5	
	c)	Using Taylor's series, derive the finite difference expressions for the following partial differential equations: (i) First-order central second difference for $\frac{\partial u}{\partial x}$ (ii) Second-order central second difference for $\frac{\partial^2 u}{\partial x^2}$	CO1	PO2	10	
OR						
6	a)	What is time marching and space marching in discretization process? Explain with an example.	CO1	PO1	5	
	b)	List types of errors in the solution methods and explain briefly any two types.	CO1	PO1	5	
	c)	Derive the finite difference solution for a transient equation $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ using following schemes: (i) Explicit scheme, (ii) Implicit scheme and (iii) Crank-Nicolson scheme	CO1	PO2	10	
UNIT - V						
7	a)	What is final volume method? What are its advantages?	CO1	PO1	5	
	b)	Explain briefly Cell-Centered spatial discretization technique used in finite volume method.	CO1	PO1	5	
	c)	Derive an expression for calculating the average value of u for the successive nodes for governing equation $\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0$ using the 1-D finite volume method.	CO1	PO2	10	
