

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

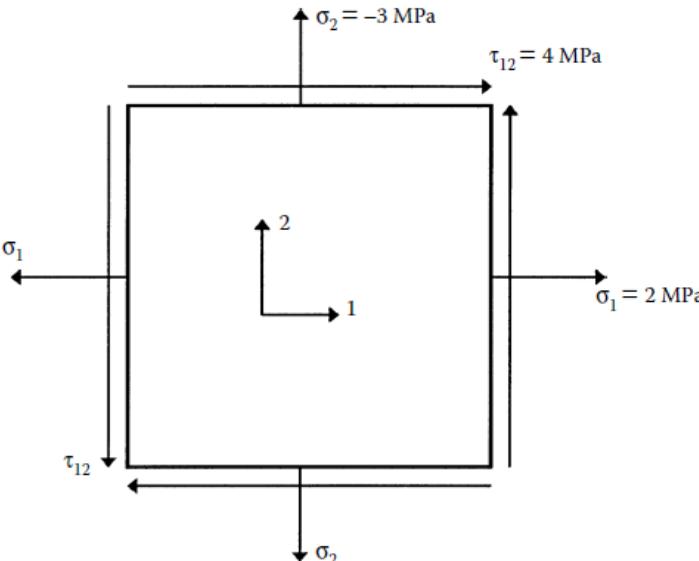
Branch: Aerospace Engineering

Course Code: 20AE6DCCMT

Course: Composite Materials

Semester: VI

Duration: 3 hrs.


Max Marks: 100

Instructions:

1. Draw figures wherever necessary.
2. Assume suitable data wherever necessary.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - I			CO	PO	Marks
1	a)	Define a composite material; Brief about the complete classification of composite materials.	<i>CO1</i>	<i>PO1</i>	5
	b)	Write a short note on i) Fiber ii) Particulate iii) whiskers iv) sandwich v) Flakes	<i>CO1</i>	<i>PO1</i>	5
	c)	Explain the application of composites in covering different fields of applications.	<i>CO1</i>	<i>PO1</i>	10
OR					
2	a)	Explain pultrusion process with a neat sketch. Mention its applications.	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain hand layup and spray layup of polymer matrix composites	<i>CO1</i>	<i>PO1</i>	10
UNIT - II					
3	a)	Write down the elements of reduced stiffness matrix of a unidirectional lamina stating the assumptions in evolving this matrix. Derive an expressions for the reduced stiffness coefficients in terms of Elastic constants of the lamina.	<i>CO2</i>	<i>PO1 PO2</i>	10
	b)	Determine the modulus of elasticity of a FRP on fiber direction (E_1) and in the transverse direction (E_2), with proper representative sketches.	<i>CO2</i>	<i>PO1 PO2</i>	10
OR					
4	a)	Determine the equation of major poison's ratio and the equation of Shear Modulus of a unidirectional lamina, with proper representative sketches.	<i>CO2</i>	<i>PO1 PO2</i>	12

	b)	<p>For a graphite/epoxy unidirectional lamina, find the following, find</p> <ol style="list-style-type: none"> 1. Compliance matrix 2. Reduced stiffness matrix <p>if the applied stresses (in Figure 4b) are $\sigma_1 = 2 \text{ MPa}$, $\sigma_2 = 3 \text{ MPa}$, $\tau_{12} = 4 \text{ MPa}$. $E_1 = 181 \text{ GPa}$, $E_2 = 10.3 \text{ GPa}$, $\nu_{12} = 0.28$ and $G_{12} = 7.17 \text{ GPa}$</p>	CO2	PO1 PO2	08
Figure:4b					
		UNIT - III			
5	a)	Write down the elements of reduced compliance matrix of 2D orthotropic angular lamina stating the assumptions in evolving this matrix. Derive expressions for the reduced compliance coefficients in terms of engineering constants.	CO3	PO1 PO2	12
	b)	Determine the equations for the elements of the transformed reduced stiffness matrix for a Two-Dimensional Angle.	CO3	PO1 PO2	08
UNIT - IV					
6	a)	Explain in detail on non-Interactive failure criteria and its types	CO4	PO1 PO2	5
	b)	State and explain Tsai-Hill theory of a lamina	CO4	PO1 PO2	10
	c)	State and explain Tsai- Wu theory of a lamina	CO4	PO1 PO2	5
UNIT - V					
7	a)	Derive an expression for the three stiffness matrices [A], [B] and [D] for a 2D laminate composite	CO5	PO1 PO2	12
	b)	Write the assumptions of Classical lamination theory (CLT) and derive the stress-strain relations for a classical laminate and represent the stress-strain variation in a laminate.	CO5	PO1 PO2	08