

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

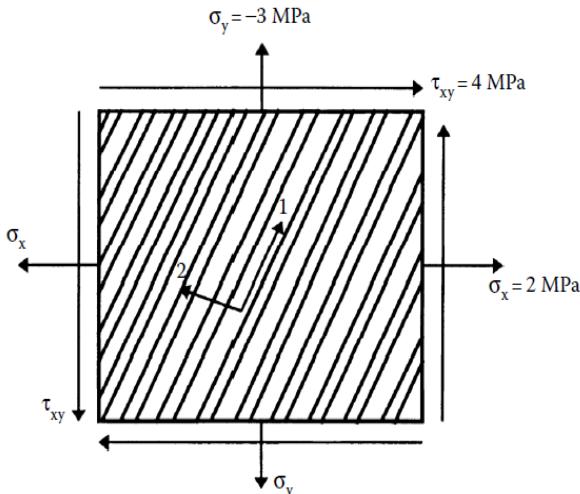
Course Code: 20AE6DCCMT

Course: Composite Materials

Semester: VI

Duration: 3 hrs.

Max Marks: 100


Date: 12.07.2023

Instructions:

1. Draw figures wherever necessary.
2. Assume suitable data wherever necessary.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Explain the classification of composite materials with examples.	<i>CO1</i>	<i>PO1</i>	10
	b)	Illustrate the application of composite in aerospace & also explain about the future potential of composite.	<i>CO1</i>	<i>PO1</i>	10
		OR			
2	a)	With a neat diagram explain about the pultrusion process along with its advantages & disadvantage.	<i>CO1</i>	<i>PO1</i>	10
	b)	Sketch & explain about the injection moulding process with its advantages & disadvantages.	<i>CO1</i>	<i>PO1</i>	10
UNIT - II					
3	a)	Derive longitudinal young's modulus (Rule of mixture) of a unidirectional lamina.	<i>CO2</i>	<i>PO1</i> <i>PO2</i>	08
	b)	<p>A composite material is made by using 10% by volume of kelvar fibre and 90% epoxy matrix. If the elastic moduli of kelvar is 130 GN/m^2 and epoxy is 4 GN/m^2, $v_f = 0.2$, $v_m = 0.3$. Calculate the following</p> <ol style="list-style-type: none"> Young's modulus of the composite material in the fibre direction. Young's modulus of the composite material in the transverse direction Fraction of load carried by the fibres. Major Poisson's ratio Minor Poisson's ratio 	<i>CO2</i>	<i>PO1</i> <i>PO2</i>	12

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Show the reduction of anisotropic material stress-strain Equation to those of a monoclinic material stress-strain Equation	CO2	PO1 PO2	08
	b)	Calculate the compliance and stiffness matrix for a graphite/epoxy lamina. The material properties are given as $E_1 = 181\text{ MPa}$, $E_2 = 10.3\text{ GPa}$, $E_3 = 10.3\text{ GPa}$, $v_{12} = 0.28$, $v_{23} = 0.60$, $v_{13} = 0.27$, $G_{12} = 7.17\text{ GPa}$, $G_{23} = 3.0\text{ GPa}$, $G_{31} = 7.00\text{ GPa}$.	CO2	PO1 PO2	12
UNIT - III					
5	a)	<p>Estimate the following for a 60° angle lamina of graphite/epoxy for the material shown in figure 5a.</p> <p>i) Transformed Compliance matrix ii) Transformed reduced stiffness matrix</p> <p>Take $S_{11} = 0.5525*10^{-11} \text{ 1/Pa}$, $S_{22} = 0.9709*10^{-10} \text{ 1/Pa}$, $S_{12} = -0.1547*10^{-11} \text{ 1/Pa}$ & $S_{66} = 0.1395*10^{-9} \text{ 1/Pa}$.</p>	CO3	PO1 PO2	10
	b)	<p>Figure 5a</p> <p>A 60° angle graphite/epoxy lamina is subjected only to a shear stress $\tau_{xy} = 2 \text{ MPa}$ in the global axes as shown in Figure 5b. What would be the value of the strains measured by the strain gage rosette. Given, $E_1 = 181 \text{ GPa}$, $E_2 = 10.3 \text{ GPa}$, $V_{12} = 0.28$ and $G_{12} = 7.17 \text{ GPa}$.</p>	CO3	PO1 PO2	10

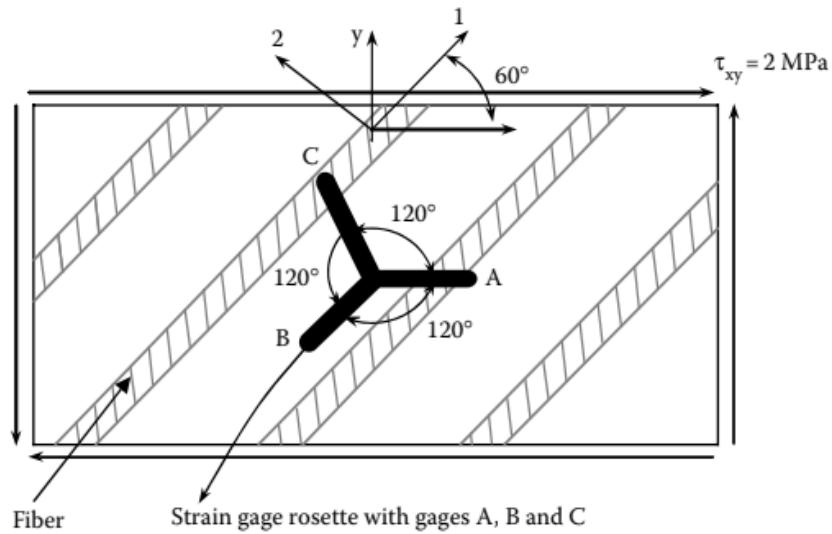


Figure 5b

UNIT - IV

6 a) Find the maximum value of $S > 0$ if a stress, $\sigma_x = 2S$, $\sigma_y = -3S$, & $\tau_{xy} = 4S$ is applied to the 60° lamina of graphite/epoxy. Use maximum stress failure theory and the properties of a unidirectional graphite/epoxy lamina using the table.

$E_1 = 38.6 \text{ GPa}$; $E_2 = 8.27 \text{ GPa}$; $G_{12} = 4.14 \text{ GPa}$; $V_{12} = 0.26$

$(\sigma_1^T)_{\text{ult}} = 1062 \text{ MPa}$, $(\sigma_1^C)_{\text{ult}} = 610 \text{ MPa}$, $(\sigma_2^T)_{\text{ult}} = 31 \text{ MPa}$,
 $(\sigma_2^C)_{\text{ult}} = 118 \text{ MPa}$, $(\tau_{12})_{\text{ult}} = 72 \text{ MPa}$.

CO4 *PO1*
PO2

b) Illustrate about the Tsai-Hill Failure theory.

CO4 *PO1*
PO2

UNIT - V

7 a) Illustrate about Symmetric Laminates, Balanced Laminates & cross ply Laminates.

CO5 *PO1*
PO2

b) Explain about the classical lamination theory.

CO5 *PO1*
PO2

c) Derive the Strain – Displacement relations for a classical laminate.

CO5 *PO1*
PO2
