

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 20AE6DCDSM

Max Marks: 100

Course: Flight Dynamics and Space Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
1	a)	Describe the order of rotation of Euler angles to get the actual orientation of the body frame relative to the fixed frame.	CO1	PO1	6	
	b)	Graphically represent a system which is statistically stable but dynamically unstable.	CO1	PO1	2	
	c)	Formulate the basic equations of motion for six-degrees of freedom of an aircraft.	CO1	PO2	12	
			UNIT - II			
2	a)	Infer about small perturbation theory.	CO2	PO2	4	
	b)	Starting with the X force equation, use the small-disturbance theory to determine the linearized force equation. Assume a steady-level flight for the reference flight conditions.	CO2	PO2	16	
			OR			
3		Derive the expression for stability derivatives due to the pitching rate.	CO2	PO2	20	
			UNIT - III			
4	a)	Derive the expression for stability derivatives due to rolling rate.	CO3	PO2	16	
	b)	Infer about the effect of wing span on roll damping coefficient.	CO3	PO2	4	
			UNIT - IV			
5	a)	Differentiate short period oscillations and Phugoid oscillations.	CO4	PO1	4	
	b)	Find the natural frequency and the damping ratio based on two degree of freedom long period approximation is given by the standard equation given below.	CO4	PO1	16	

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		$ \begin{bmatrix} s - X_u - X_{T_u} & -X_\alpha & g \cos \Theta_1 \\ -Z_u & [s(U_1 - Z_\alpha) - Z_\alpha] & [-(Z_q + U_1)s + g \sin \Theta_1] \\ -(M_u - M_{T_u}) & -(M_\alpha s + M_\alpha + M_{T_\alpha}) & (s^2 - M_q s) \end{bmatrix} = \begin{bmatrix} X_{\delta_e} \\ Z_{\delta_e} \\ M_{\delta_e} \end{bmatrix} \delta_e s $			
		UNIT - V			
6	a)	Calculate the velocity of an artificial satellite having a circular orbit around the Earth at an altitude of 200 km above the Earth's surface. (Radius of the earth $R = 6378.14$ km and $\mu = 398600.5$ km^3/s^2).	CO5	PO1	4
	b)	Write short notes on Newton's Law of Universal Gravitation with suitable diagram.	CO5	PO1	4
	c)	State and prove Kepler's first law of planetary motion	CO5	PO2	12
		OR			
7	a)	State and Prove Kepler's third law of planetary motion.	CO5	PO1	14
	b)	Find the gravitational force of attraction between the moon and the earth if the mass of the moon is $1/81$ times the mass of earth. $G = 6.67 \times 10^{-11} \text{ N m}^2/\text{kg}^2$, radius of moon's orbit is 3.58×10^5 km. Mass of the earth = 6×10^{24} Kg.	CO5	PO2	6
