

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

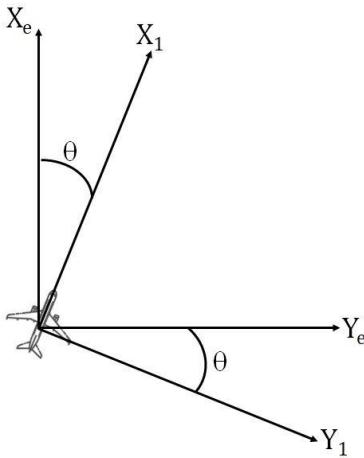
Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 20AE6DCDSM


Max Marks: 100

Course: Flight Dynamics and Space Mechanics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Write down the accepted limits on Euler angles. Convert the coordinate of the position vector in the Earth axis system defined by</p> $\vec{F}_E = x_E \hat{i}_E + y_E \hat{j}_E + z_E \hat{k}_E$ <p>to the body axis system (\vec{F}_B) based on the accepted sequence of Euler angles with possible vector diagrams.</p>	CO1	PO1	10
	b)	<p>Given the following vectors, find the inertial acceleration in the body axis system:</p> $\vec{a}_t = \dot{\vec{V}}_B + \vec{\omega} \times \vec{V}_B$ $\dot{\vec{V}}_B = \begin{Bmatrix} 3 \\ 0 \\ 0 \end{Bmatrix}_B \text{ m/s}^2, \quad \vec{V}_B = \begin{Bmatrix} 0 \\ 0 \\ 0.3 \end{Bmatrix}_B \text{ rad/s} \quad \text{and} \quad \vec{V}_B = \begin{Bmatrix} 100 \\ 0 \\ 0 \end{Bmatrix}_B \text{ m/}$ s	CO1	PO2	05
	c)	<p>Consider the T-37 at the following Euler angles: Yaw angles $\Psi = +90^\circ$, Pitch angle $\Theta = +10^\circ$ and Roll angle $\phi = +10^\circ$ Describe the aircraft attitude and transform the weight force through these angles to the body axis system. The gross weight is 30 kN.</p>	CO1	PO2	05
OR					
2	a)	The transformation from the axes system 1 is given by $E_1 = TE_e$	CO1	PO2	05

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

The transformation matrix T can be derived by expressing the unit vectors of system 1 in terms of the unit vectors of system e. Derive the expression for the transformation matrix.

b) A T-37 is executing a loop under the following conditions:
 Euler angles: Yaw angles $\Psi = 0^\circ$, Pitch angle $\Theta = +30^\circ$ and
 Roll angle $\phi = 0^\circ$
 The pilot observes the pure pitch rate at a constant velocity in the body axis system

$$\vec{\omega}_B = \begin{Bmatrix} 0 \\ 0.1 \\ 0 \end{Bmatrix} \text{ rad/s} \quad \text{and} \quad \vec{V}_B = \begin{Bmatrix} 60 \\ 0 \\ 0 \end{Bmatrix} \text{ m/s}$$

What is the acceleration in the earth-fixed reference system?

c) Draw the vector diagram for the stability axis system of an aircraft and convert it into the body axis system in terms of the aerodynamic forces.

UNIT - II

3 a) Linearize the kinematic equation of motion $P = -\sin \Theta \dot{\Psi} + \dot{\Phi}$.

b) Show that the derivative due to the changes in the forward speed in the x-direction with respect to u/U_1 is dependent on the speed damping derivative and the coefficient of aerodynamic drag under steady-state conditions by deriving a relation.

OR

4 a) Show that the derivative due to the change of angle of attack in the z-direction with respect to $\hat{\alpha}$ is dependent on the lift-curve slope and the coefficient of aerodynamic drag under steady-state conditions by deriving a relation.

b) Find the $\hat{\alpha}$ derivative $\frac{\partial F_{A_z}}{\partial \hat{\alpha}}$ for the F-4C aircraft at the same flight conditions as those of the prior problem in which $C_{L\alpha} = 3.75 \text{ /rad}$. If the F-4C is trimmed at an angle of attack of 2.6° and then is perturbed to 3.1° , find the perturbed aero force along the z-stability axis (F_{A_z}).

CO1

PO2

05

CO1

PO1

10

CO2

PO2

08

CO2

PO1

12

CO2

PO1

10

CO2

PO2

10

UNIT - III						
5	a)	Illustrate the influence of yaw rate on velocity distribution on the wing and tail with a neat sketch.	CO3	PO1	05	
	b)	Derive the expression for stability derivatives due to the yaw rate.	CO3	PO1	15	
OR						
6		Derive the expression for stability derivatives due to the rolling rate.	CO3	PO1	20	
UNIT - IV						
7	a)	Find the natural frequency and the damping ratio based on the two degree of-freedom short period approximation given by the standard equation below.	CO4	PO1	10	
		$\begin{bmatrix} s - X_u & X_\alpha & g \\ -Z_u & s(U - Z_\alpha) - Z_\alpha & -(Z_q + U_1)s \\ M_u & (M_\alpha s + M_\alpha) & s^2 - M_q s \end{bmatrix} \begin{bmatrix} \frac{U(s)}{\delta_e s} \\ \frac{\alpha(s)}{\delta_e s} \\ \frac{\theta(s)}{\delta_e s} \end{bmatrix} = \begin{bmatrix} X_{\delta_e} \\ Z_{\delta_e} \\ M_{\delta_e} \end{bmatrix}$				
	b)	Explain autorotation in aircraft with respect to the lift and drag curve.	CO4	PO1	10	
OR						
8	a)	Find the natural frequency of the phugoid as a slow interchange of kinetic energy and potential energy with the necessary assumptions from the Lanchester model.	CO4	PO1	10	
	b)	The α/δ_e transfer function for a T-37 cruising at 9,000 m and 0.46 Mach is given below by the equation. Find the natural frequency, damping ratio, damped frequency, and time constant for the short period and phugoid modes.	CO4	PO2	10	
		$\frac{\alpha}{\delta_e} = \frac{(S + 336.1)(s^2 + 0.0105s + 0.0097)}{s^4 + 4.5898s^3 + 21.6536s^2 + 0.2204s + 0.1879}$				
UNIT - V						
9	a)	Prove that $r_o = \frac{L^2}{GMm^2}$ and $e^2 = 1 + \frac{2Er_o}{GMm}$ in an ellipse. Where r_o is the semi-latus rectum.	CO5	PO1	10	
	b)	An earth satellite is in an orbit with perigee altitude $z_p = 400$ km and an eccentricity $e = 0.6$. Find (i) the perigee velocity (ii) the apogee radius (iii) the semimajor axis (iv) the apogee velocity (v) the period of the orbit. ($\mu = 3,98,600 \text{ km}^3/\text{s}^2$ and the radius of the earth $R = 6378 \text{ km}$)	CO5	PO2	10	
OR						
10	a)	State and prove Kepler's First law of planetary motion.	CO5	PO1	10	
	b)	State and derive Kepler's third law of planetary motion.	CO5	PO1	05	
	c)	Derive the equation for gravitational potential energy.	CO5	PO1	05	
