

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

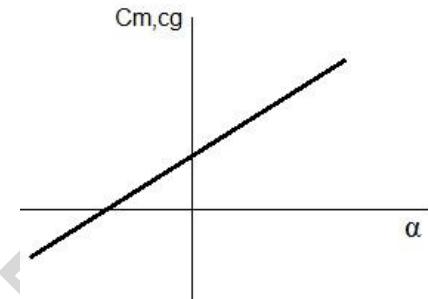
July 2023 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.


Course Code: 20AE6DCDSM

Max Marks: 100

Course: Flight Dynamics and Space Mechanics

Date: 05.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
			1	a)	Is the airplane having $C_{m,cg}$ vs α graph, as shown in Fig. 1, controllable and flyable? Justify.			
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.						CO1	PO2	4
			2	b)	Explain the following axes system used in dynamic stability analysis with neat sketch. i) Body axes system ii) Earth axes system	CO1	PO1	4
			3	c)	Derive the equations of motion of a rigid body subjected to inertial forces and moments.	CO1	PO2	12
UNIT - II								
2					Derive the expression for stability derivatives due to change in forward speed.	CO2	PO2	20
			OR					
3					Derive the expression for stability derivatives due to time rate of change of angle of attack.	CO2	PO2	20
UNIT - III								
4	a)				Illustrate the influence of yaw rate on relative velocity distribution on wing and tail with a neat sketch.	CO3	PO2	4
	b)				Derive the expression for stability derivatives due to yawing rate.	CO3	PO2	16

UNIT - IV					
5	a)	<p>Find the natural frequency and the damping ratio based on two degree of freedom short period approximation is given by the standard equation given below.</p> $\begin{bmatrix} s - X_u - X_{T_u} & -X_\alpha & g \cos \Theta_1 \\ -Z_u & [s(U_1 - Z_\alpha) - Z_\alpha] & [-(Z_q + U_1)s + g \sin \Theta_1 \\ -(M_u - M_{T_u}) & -(M_\alpha s + M_\alpha + M_{T_\alpha}) & (s^2 - M_q s) \end{bmatrix}$ $= \begin{bmatrix} X_{\delta_e} \\ Z_{\delta_e} \\ M_{\delta_e} \end{bmatrix} \delta_e s$	CO4	PO1	16
	b)	<p>Define the term longitudinal dynamic stability of the airplane. Explain if an airplane when possessing static longitudinal stability will as well be dynamically stable.</p>	CO4	PO2	4
UNIT - V					
6	a)	<p>Write the equation for calculating the velocity in an elliptical orbit and hence deduce an expression for calculating the velocity in a circular orbit.</p>	CO5	PO1	2
	b)	<p>State the Kepler's three empirical laws of planetary motion.</p>	CO5	PO1	6
	c)	<p>Prove the Kepler's first law of planetary motion.</p>	CO5	PO1	12
OR					
7	a)	<p>The distance of a planet from the earth is 2.5×10^7 km and the gravitational force between them is 3.82×10^{18} N. Mass of the planet and earth are equal, each being 5.98×10^{24} kg. Calculate the universal gravitation constant.</p>	CO5	PO2	6
	b)	<p>An earth satellite is in an orbit with perigee altitude $Z_p = 400$ km and an eccentricity $e = 0.6$. Find (i) the perigee velocity (ii) the apogee radius (iii) the semi-major axis (iv) the apogee velocity (v) the period of the orbit. ($\mu = 3,98,600 \text{ km}^3/\text{s}^2$ and the radius of the earth $R = 6378$ km)</p>	CO5	PO2	14
