

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 20AE6DEFFM

Course: Fatigue and Fracture Mechanics

Semester: VI

Duration: 3 hrs.

Max Marks: 100

Date: 19.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Write Sketches wherever necessary.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as	1	a)	Draw a typical S-N curve for mild steel and explain the effect of mean stress with necessary plots.			CO 1	PO1 PO2	10
		b)	Draw a typical fatigue stress cycle indicating (i) mean, (ii) max, (iii) amplitude and (iv) stress ratio, on it.			CO 1	PO1 PO2	04
		c)	Define the following: i) stress concentration factor, K_t ii) fatigue-notch factor, K_f iii) Notch sensitivity factor, q			CO 1	PO1 PO2	06
OR								
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as	2	a)	Define fatigue failure. Explain the Goodman, Soderberg and Gerber plot of S-N curve with necessary equations.			CO 1	PO1 PO2	10
		b)	Draw and compare the S-N curves of a notched and un-notched mild-steel specimen.			CO 1	PO1 PO2	04
		c)	Draw the Haigh diagram indicating stress ratio (R), max. stress, mean stress and number of cycles to failure (N) for an un-notched metallic specimen.			CO 1	PO1 PO2	06
UNIT - II								
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as	3	a)	Briefly explain the Coffin-Manson relationship with a plot.			CO 2	PO1 PO2	06
		b)	Represent the following schematically: i) Stress-controlled loading, strain response for cycle hardening and strain response for cyclic softening			CO 1	PO1 PO2	06

		ii) Strain controlled loading, stress response for cyclic hardening, stress response for cyclic softening			
	c)	Define Low Cycle Fatigue. Explain Neuber's rule with a plot.	CO 1	PO1 PO2	08
UNIT - III					
4	a)	List the four fatigue cycle counting techniques and explain any one.	CO 2	PO1	10
	b)	Define "Fatigue Damage". Explain the Miner's rule and mention its limitations.	CO 2	PO1	10
UNIT - IV					
5	a)	Explain the Griffith's energy balance criterion and derive an expression for stress required to fracture a plate having a through thickness elliptical crack.	CO 3	PO1	08
	b)	Describe a typical fatigue crack growth rate curve highlighting the Paris region and the governing equation.	CO 3	PO1	06
	c)	Explain the effect of specimen thickness on the critical stress intensity factor.	CO 3	PO1	06
OR					
6	a)	Explain the formation of crack tip plasticity under cyclic loading	CO 3	PO1	08
	b)	Write the expression relating energy release rate and stress intensity factor for plane strain and plane stress conditions.	CO 3	PO1	04
	c)	Define linear elastic fracture mechanics. Highlight the importance of stress intensity factor approach as compared to stress concentration approach.	CO 3	PO1	08
UNIT - V					
7	a)	Elaborate on "Safe-life" and "Fail-safe" design philosophies highlighting at least one limitations in each.	CO43	PO1	06
	b)	What are the recommended practices to improve fatigue design of a structure?	CO 1	PO1	08
	c)	How is damage tolerance evaluation done?	CO 1	PO1	06
