

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

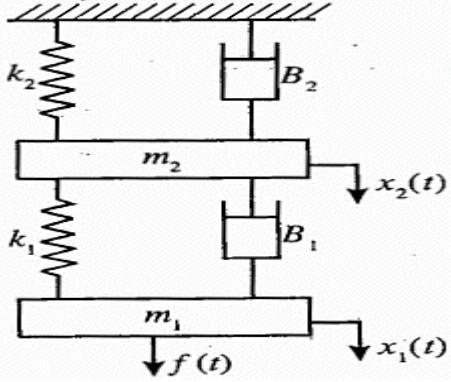
Autonomous Institute Affiliated to VTU

August 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering


Duration: 3 hrs.

Course Code: 20AE6DCICT

Max Marks: 100

Course: Introduction to Control Theory

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			<i>CO</i>	<i>PO</i>	Marks
1	a)	Write short notes on application of controls in aerospace engineering	<i>CO1</i>	<i>PO</i> 1	10
	b)	What are the design consideration of a control system? Also write down the requirements of an ideal control system.	<i>CO1</i>	<i>PO1</i>	10
OR					
2	a)	Derive the state model equation in its general form for both time invariant system and time variant system.	<i>CO 2</i>	<i>PO1</i> <i>PO2</i>	10
	b)	Explain the concept of automatic control system by giving two examples along with the neat diagram.	<i>CO1</i>	<i>PO1</i>	10
UNIT - II					
3	a)	For the mechanical system shown in the figure 3(a) Draw the mechanical network Write the differential equation of the system Draw the analogous electrical network based on F-V and F-I analogy	<i>CO1</i>	<i>PO1</i>	10
	<p>Fig : 3(a)</p>				
	b)	What do you mean by mechanical translational system and rotational system? Explain about its basic elements with suitable sketches.	<i>CO1</i>	<i>PO1</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Reduce the block diagram shown in the figure 4(a) to its simplest possible form and find its closed loop transfer function	CO1	PO1 PO2	12
Fig : 4 (a)					
	b)	Derive the transfer function of a closed loop system	CO1	PO1 PO2	08
UNIT - III					
5	a)	What do you mean by steady state error? Derive the expression for error constant and steady state error.	CO1	PO1 PO2	10
	b)	Explain the order and type of a control system with the help of a feedback control system	CO2	PO1 PO2	08
UNIT - IV					
6	a)	What do you mean by stability of the system? Explain its concept by giving suitable example	CO1	PO1	08
	b)	Construct the root locus plots for the forward-path transfer function of a unity-feedback control system is $G(s) = \frac{K}{s(s+2)(s+4)(s+6)}$ For what values of K the system becomes unstable	CO3	PO1 PO2 PO3	12
UNIT - V					
7	a)	Illustrate the concept of controllability and observability by giving suitable example	CO 1	PO 1	10
	b)	Derive the state-space representation of scalar differential equation systems	CO2	PO1 PO2	10
