

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

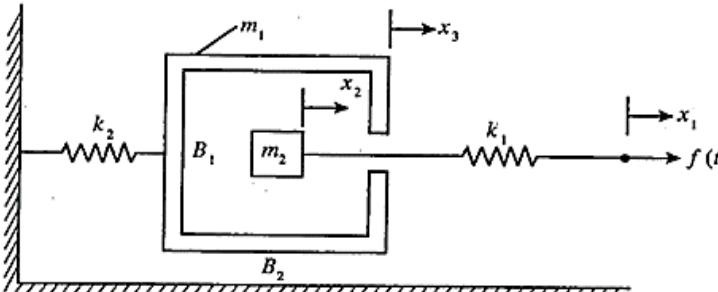
July 2023 Semester End Main Examinations

Programme: B.E.

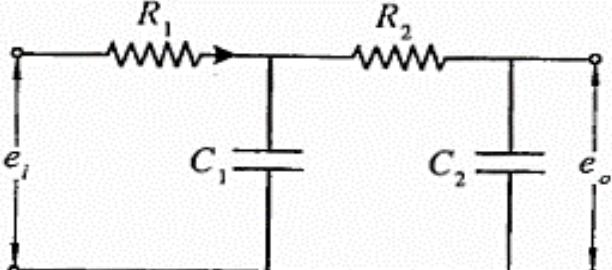
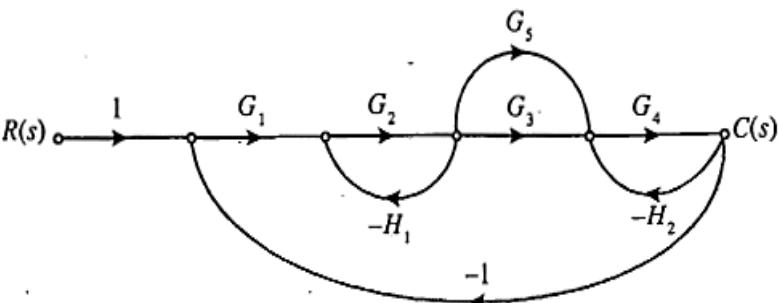
Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.


Course Code: 20AE6DCICT

Max Marks: 100



Course: Introduction to Control Theory

Date: 10.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

		UNIT - I	<i>CO</i>	<i>PO</i>	Marks
1	a)	Describe the working principle of missile launcher and guidance system with suitable sketches	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain the functioning of an open loop control system by giving two examples along with suitable figures and also write down the advantages and disadvantages for the same.	<i>CO1</i>	<i>PO1</i>	10
		OR			
2	a)	Mention different types of controllers. Explain any two of them in detail	<i>CO2</i>	<i>PO1</i>	10
	b)	Explain the functions that automatic control systems provide for flight control	<i>CO1</i>	<i>PO1</i>	10
		UNIT - II			
3	a)	For the mechanical system shown in the figure 3(a) (i) Draw the equivalent mechanical network (ii) Obtain the differential equation of equilibrium (iii) Draw the analogous electrical network based on F-V analogy	<i>CO1</i>	<i>PO1</i>	12
		Fig : 3(a)			
	b)	Explain the model of a hydraulic system with the help of its basic elements and relevant sketches	<i>CO1</i>	<i>PO1</i>	08
		OR			

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

4	a)	<p>Obtain the transfer function $\frac{E_o(s)}{E_i(s)}$ of the electrical circuit shown in figure 4(a)</p> <p>Fig : 4(a)</p>	CO1 PO1 PO2	08
	b)	<p>Using signal flow graph and Mason's gain formula, obtain the overall transfer function of the system shown in the figure 4(b)</p> <p>Fig : 4(b)</p>	CO1 PO1 PO2	12
UNIT - III				
5	a)	<p>Derive the steady state error for TYPE-1 and TYPE-2 unity feedback systems by using unit step, unit ramp and unit parabolic signals as input</p>	CO1 PO1 PO2	12
	b)	<p>Explain the order and type of a control system with the help of a feedback control system</p>	CO2 PO1 PO2	08
UNIT - IV				
6	a)	<p>Give the conditions for stability analysis of a system in the form of a tabular column</p>	CO1 PO1 PO2	08
	b)	<p>Construct the root locus plots for the forward-path transfer function of a unity-feedback control system is</p> $G(s) = \frac{K}{s(s+1)(s+2)(s+3)}$ <p>For what values of K the system becomes unstable</p>	CO3 PO1 PO2 PO3	12
UNIT - V				
7	a)	<p>Describe the concept of Kalman's test of controllability and observability</p>	CO1 PO1	10
	b)	<p>Give the state model of linear time invariant system and also give its matrix representation</p>	CO2 PO1	10
