

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 21AE7DCAVD

Course: Aerospace Vehicle Design and Analysis

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Show that, the induced drag is equal to parasite drag at the minimum thrust required condition.	CO 1 PO 1 PO 2	PO 1 PO 2	5
	b)	For the propeller-driven aircraft, derive the expression of range in terms of weight fraction.	CO 1 PO 1 PO 2	PO 1 PO 2	5
	c)	Describe the take-off gross weight estimation procedure to design an aircraft that has simple mission segments, such as take-off, climb, cruise, loiter, and land. Write down step-by-step methods using block diagrams.	CO 1 PO 1 PO 2	PO 1 PO 2	6
	d)	Discuss briefly the trade studies.	CO 1	PO 1	4
OR					
2	a)	Consider a jet aircraft that has to fulfill the mission requirements mentioned in the mission profile (Figure 1). It has to fly at a velocity of $V = 0.6$ Mach at 30,000 ft altitude. Estimate the fuel fraction for the entire mission considering a 6% allowance for reserve and trapped fuel. Consider, Payload = 10,000 lb and the Crew weight = 800 lb. Specific fuel consumption for jet aircraft during cruise, $C = 0.5 \text{ l/hr}$ during loiter, $C = 0.4 \text{ l hr}$ 1 n mile = 6076 ft Speed of sound at 30,000 ft = 994.8 ft/s Aspect ratio of the wing (A) = 7 Wetted area ratio ($S_{\text{wet}}/S_{\text{ref}}$) = 5.5 Wetted aspect ratio, $A_{\text{wetted}} = \frac{b^2}{S_{\text{wetted}}} = \frac{A}{(S_{\text{wet}}/S_{\text{ref}})}$	CO 1	PO 3	15

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

$$(L/D)_{\max} = K_{LD} \sqrt{A_{\text{wetted}}} = K_{LD} \sqrt{\frac{A}{(S_{\text{wet}}/S_{\text{ref}})}}$$

Consider, $K_{LD} = 13$

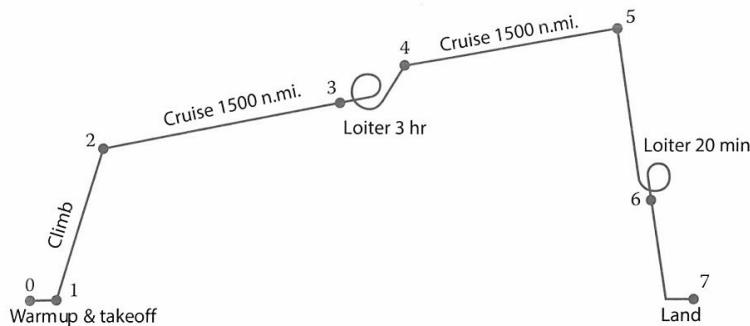


Figure 1

Historical Mission-Segment Weight Fractions

Mission Segment	(W_i/W_{i-1})
Warmup and takeoff	0.970
Climb	0.985
Landing	0.995

Lift-to-Drag Ratio

	Cruise	Loiter
Jet	$0.866 L/D_{\max}$	L/D_{\max}
Prop	L/D_{\max}	$0.866 L/D_{\max}$

b) Describe three primary phases of aircraft design.

CO 1 PO 1 **5**

UNIT - II

3 a) Describe the advantages and disadvantages of T-tail.

CO 2 PO 1 **4**

b) Why wing sweep is used? Write down two major detrimental consequences associated with wing sweep.

CO 2 PO 1
PO 2 **6**

c) Show that, at an infinite wing aspect ratio, the coefficient of lift of the wing is the same as the coefficient of lift of the airfoil.

CO 2 PO 1
PO 2 **6**

d) Explain two major disadvantages when the camber is introduced in increasing the maximum coefficient of lift.

CO 2 PO 1 **4**

UNIT - III

4 a) What do you understand by instantaneous turn rate and sustained turn rate? Explain along with the mathematical descriptions.

CO 3 PO 1 **6**

b) Describe how wing loading and thrust loading are interconnected by taking an example of the take-off distance as a design parameter.

CO 3 PO 1
PO 2 **5**

c) Derive the thrust-to-weight ratio for climb and cruise states. In which case, the thrust-to-weight ratio will be higher.

CO 4 PO 1
PO 2 **5**

	d)	Describe thrust matching.	CO 4	PO 1 PO 2	4
		OR			
5	a)	<p>For developing a conceptual design of an aircraft, the design goals are mentioned below:</p> <p>$V_{max} \geq 130$ knots, $V_{stall} \leq 50$ knots, Take-off distance (over 50 foot of obstacle clearance) ≤ 1000 ft $V_{cruise} = 115$ knots $V_{climb} = 70$ knots Rate of Climb=1500 foot per minute Aspect Ratio of the wing = 6 Oswald span efficiency factor $e = 0.8$ Density of fluid(air) at sea-level condition (ρ)= 0.00238 slug/ft³ $C_{D0} = 0.02$ $V_{TO} = 1.1 V_{stall}$ $Hp/W = 1/8$ Propeller efficiency = 0.8 Maximum lift-coefficient of Airfoil (C_L, max)=1.3 Dynamic pressure at cruise altitude = 35 lb/ft²</p> <p>1 knot = 1.689 ft/s 1 n mile = 6076 ft.</p> <p>Take off Parameter (TOP) (for 50 foot obstacle clearance) = $\frac{w}{\frac{s}{\sigma(C_L)_{TO} \frac{hp}{w}}} = 120$ (fps), $\sigma = \frac{\rho_{TO}}{\rho_{Sea-level}}$, C_L = Coefficient of lift of the wing, TO = Take-off condition Consider, takeoff happens at sea-level conditions.</p> <p>Calculate the wing loading based on (i) Stall velocity, (ii) Take-off distance (till 50 foot of obstacle clearance distance), (iii) Climb rate, and (iv) cruise considerations</p>	CO 4	PO 3	20
		UNIT - IV			
6	a)	Define rubber and fixed-size engines.	CO 5	PO 1	5
	b)	What is Known-time fuel burn? Derive the mission segment weight fraction during Known-time fuel burn for the rubber engine.	CO 5	PO 1 PO 2	10
	c)	Describe conic lofting.	CO 5	PO 1	5
		UNIT - V			
7	a)	Explain maneuver and gust loads.	CO 6	PO 1 PO 2	6
	b)	Describe four different types of flaps with the appropriate diagrams.	CO 6	PO 1	8
	c)	Briefly describe “Installed Engine Thrust”.	CO 6	PO 1	6
