

B.M.S. College of Engineering, Bengaluru-560019

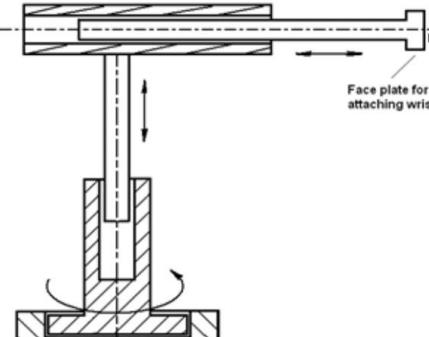
Autonomous Institute Affiliated to VTU

January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 21AE7DEITR


Course: INTRODUCTION TO ROBOTICS

Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Explain briefly the robot coordinates with a neat sketch.	<i>CO 1</i>	<i>PO 1</i>	6
	b)	Briefly the types of grippers in a neat sketch.	<i>CO 1</i>	<i>PO 1</i>	7
	c)	Write a note on the application of robots in the aerospace domain.	<i>CO 1</i>	<i>PO 1</i>	7
UNIT - II					
2	a)	What is a homogenous transformation matrix? Explain its submatrices.	<i>CO 2</i>	<i>PO 1</i>	6
	b)	Derive rotational matrix for coordinate transformation.	<i>CO 2</i>	<i>PO 1</i>	7
	c)	For the cylindrical robot as shown in Figure 2c, write the D-H parameters.	<i>CO 2</i>	<i>PO 3</i>	7
		 Figure 2c			
OR					
3	a)	State the important steps in the Denavit-Hartenberg (D-H) convention.	<i>CO 2</i>	<i>PO 1</i>	6
	b)	A point $a = (4, 3, 2)$ is attached to a rotating frame; the frame rotates 60 degrees about the OZ axis of the reference frame. Find the coordinates of the point relative to the reference frame after the rotation?	<i>CO 2</i>	<i>PO 3</i>	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	<p>Write the expression for the end effector position using inverse kinematics for the two link planer (2R) elbow manipulator as shown in Figure 3c.</p> <p>Figure 3c</p>	CO 2	PO 3	7															
UNIT - III																				
4	a)	Explain the different methods for calculating the Jacobian.	CO 3	PO 1	6															
	b)	Explain the Lagrangian formulation procedure for determining the torque or forces of joints.	CO 3	PO 1	6															
	c)	<p>Write the expression for the end effector velocity as a function of joint rates in terms of the base frame for the two-link planer (2R) manipulator as shown in Figure 3c. DH table and transformation matrix with usual notations are given as,</p> <table border="1" style="display: inline-table; vertical-align: middle;"> <tr> <th>Axis (i)</th> <th>α_{i-1}</th> <th>a_{i-1}</th> <th>d_i</th> <th>θ_i</th> </tr> <tr> <td>1</td> <td>0</td> <td>L_1</td> <td>0</td> <td>θ_1</td> </tr> <tr> <td>2</td> <td>0</td> <td>L_2</td> <td>0</td> <td>θ_2</td> </tr> </table> ${}^{i-1}T = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) & 0 & a_{i-1} \\ \cos(\alpha_{i-1})\sin(\theta_i) & \cos(\alpha_{i-1})\cos(\theta_i) & -\sin(\alpha_{i-1}) & -d_i \sin(\alpha_{i-1}) \\ \sin(\alpha_{i-1})\sin(\theta_i) & \sin(\alpha_{i-1})\cos(\theta_i) & \cos(\alpha_{i-1}) & d_i \cos(\alpha_{i-1}) \\ 0 & 0 & 0 & 1 \end{bmatrix}$	Axis (i)	α_{i-1}	a_{i-1}	d_i	θ_i	1	0	L_1	0	θ_1	2	0	L_2	0	θ_2	CO 3	PO 3	8
Axis (i)	α_{i-1}	a_{i-1}	d_i	θ_i																
1	0	L_1	0	θ_1																
2	0	L_2	0	θ_2																
OR																				
5	a)	What is meant by singularities in a robot? Explain briefly workspace interior and boundary singularities.	CO 3	PO 1	6															
	b)	What is meant by Joint and Cartesian-spaces description?	CO 3	PO 1	6															
	c)	<p>For a robot shown below Figure 5c with two prismatic joints (P_1, P_2), links (n_1, n_2), the link masses are of the links (m_1, m_2) and displacements (q_1, q_2), determine the expression for input force (F_1, F_2) that are required to be produced by the actuators using the Lagrangian formulation.</p>	CO 3	PO 3	8															
UNIT - IV																				
6	a)	List the advantages and disadvantages of trajectory generation in the joint space and Cartesian spaces.	CO 4	PO 1	6															

	b)	What are the robot actuators? Briefly explain various types of actuators.	CO 4	PO 1	7
	c)	A single cubic trajectory is given by $q(t) = 30 + t^2 - 6t^3$ is used for a period of 3 seconds. Draw the position, velocity, and acceleration profiles of the end effector.	CO 4	PO 3	7
UNIT - V					
7	a)	Discuss the five levels of autonomy in robots.	CO 4	PO 1	6
	b)	Discuss the various types of machine learning and AI techniques used for a robot.	CO 4	PO 1	7
	c)	Write a note on future trends in terms of market adoption and research directions for robotics.	CO 4	PO 1	7
