

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

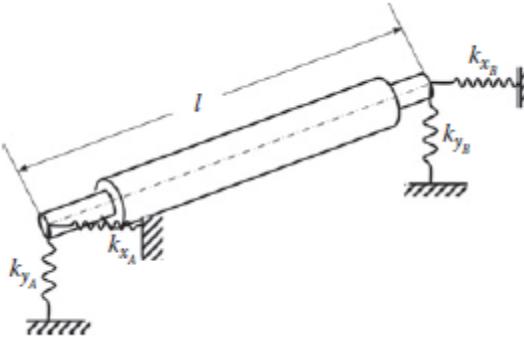
January 2024 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 21AE7DERDY

Course: Rotor Dynamics


Semester: VII

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define the following: i) Whirling of the shaft, ii) Critical speed, iii) Asynchronous whirl, iv) Synchronous whirl, v) Instability of rotor system, vi) Anti-Synchronous whirl.		CO1	PO1	06
		b)	Derive the governing differential equation of motion and natural frequency of single degree of freedom Un-damped free and forced rotor model.		CO1	PO1 PO2	10
		c)	Explain the Rankine rotor model concerning the different orbital motions of the mass.		CO1	PO1	04
			OR				
	2	a)	Derive the governing differential equation of motion and natural frequency of single degree of freedom damped free rotor model.		CO2	PO1 PO2	08
		b)	Derive the governing differential equation of motion and natural frequency of Jeffcott rotor model.		CO2	PO1 PO2	07
		c)	Explain the different methods of attenuation of vibration.		CO2	PO1	05
			UNIT - II				
	3	a)	List the Reynolds equation assumptions for calculating the performance of the hydrodynamic bearing.		CO2	PO1	06
		b)	Explain the guidelines for selecting a proper type of bearing.		CO2	PO1	04
		c)	A 360^0 or Full journal bearing (Hydrodynamic) supports a load of 20 kN when operating at 1000 rpm for a steam turbine if the allowable bearing pressure is 1.6 N/mm^2 . Determine diameter, length, clearance ratio of bearing, minimum oil film thickness, viscosity of oil, and the coefficient of friction.		CO2	PO1 PO2 PO3	10
			OR				

	4	a)	Explain the following with neat sketches: i) Un-grooved plain seals ii) Contact seals iii) Floating-ring oil seals iv) Labyrinth seals v) Honeycomb pattern seals	CO2	PO1	10
		b)	Explain the influence of pivot stiffness and the influence of bearing length or pad length.	CO2	PO1	10
UNIT - III						
5	a)		Derive the governing equations for instability analysis due to rotary seals.	CO3	PO1 PO2	10
	b)		Explain the effect of the L/D ratio on the seal's dynamic coefficients.	CO3	PO1	06
	c)		Explain with a neat sketch invention of the pocket damper seal.	CO3	PO1	04
UNIT - IV						
6	a)		Derive the four critical speeds of a rigid rotor mounted on simple anisotropic springs as bearings.	CO4	PO1 PO2	10
	b)		Find the critical speeds of a rotor system as shown in Figure 6b. The bearing stiffness properties are $k_{x_A} = 1.1$ kN/mm, $k_{y_A} = 1.8$ kN/mm, $k_{x_B} = 3.1$ kN/mm, and $k_{y_B} = 3.8$ kN/mm. The disc has $m = 10$ kg and $I_d = 0.1$ kg-m ² and length of rotor $l = 1$ meter.	CO4	PO1 PO2 PO3	04
			FIGURE 6b. A long rigid rotor on flexible bearings			
	c)		Derive the gyroscopic moment's equation for motion of a rotor mounted on two bearings.	CO4	PO1 PO2	06
UNIT - V						
7	a)		Describe the process of run-out correction in vibration signal conditioning with brevity.	CO5	PO1	06
	b)		Explain with neat sketches of vibration signature analysis.	CO5	PO1	06
	c)		Illustrate vibration measurements through the creation of clear diagrams, including waterfall and Campbell diagrams, with a visual presentation.	CO5	PO1	08
