

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

July 2023 Semester End Main Examinations

Programme: B.E.

Branch: Institutional Elective

Course Code: 21AE8OECAE

Course: Cryogenics for Aerospace Engineering

Semester: VIII

Duration: 3 hrs.

Max Marks: 100

Date: 06.07.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What do you mean by cryogenics? Contrast between cryogenics and refrigeration. Also list the various properties and uses of Liquid Nitrogen	<i>CO1</i>	<i>PO1</i>	10
	b)	Explain with neat schematic diagram the fountain effect.	<i>CO1</i>	<i>PO1</i>	10
UNIT - II					
2	a)	Explain briefly the Thrust and Velocity gain with neat sketch.	<i>CO2</i>	<i>PO1</i>	10
	b)	With the help of a neat schematic diagram explain the working of gas generator open cycle.	<i>CO2</i>	<i>PO1</i>	10
OR					
3	a)	Briefly explain the working of staged combustion cycle (closed type) with suitable neat sketch.	<i>CO2</i>	<i>PO1</i>	10
	b)	With the help of neat sketches explain the working of Expander cycle.	<i>CO2</i>	<i>PO1</i>	10
UNIT - III					
4	a)	Explain with neat sketch, the working of pre-cooled Linde Hampson.	<i>CO3</i>	<i>PO1</i>	10
	b)	Briefly explain the operation of Dual Pressure Linde Hampson method with the help of neat schematic diagram.	<i>CO3</i>	<i>PO1</i>	10
UNIT - IV					
5	a)	What are cryocoolers? Classify them with a flow chart.	<i>CO4</i>	<i>PO1</i>	10
	b)	With the help of neat sketch, briefly describe the working of Gifford McMohan type of cryocoolers.	<i>CO4</i>	<i>PO1</i>	10
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

	6	a)	What is the necessity of cryogenic insulation? list the various types of insulations used for cryogenic applications.	CO4	PO1	10
		b)	What is accommodation coefficient in vacuum? Also Explain Expanded foam type of insulation in cryogenics.	CO4	PO1	10
UNIT – V						
	7	a)	What is the necessity of Vacuum in cryogenics technology? Also explain the flow regimes in vacuum.	CO5	PO1	10
		b)	Explain in detail, the construction and working of Diffusion pump with neat schematic diagram.	CO5	PO1	10

B.M.S.C.E. - EVEN SEM 2022-23