

B.M.S. College of Engineering, Bengaluru-560019

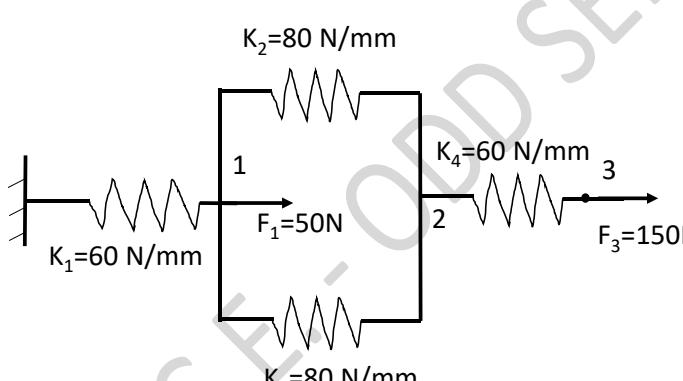
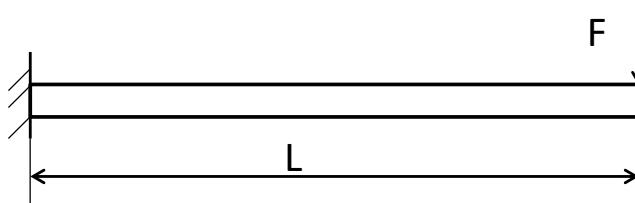
Autonomous Institute Affiliated to VTU

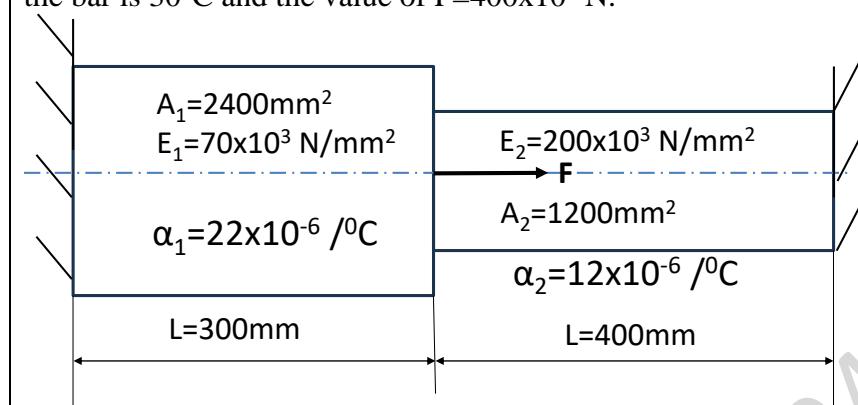
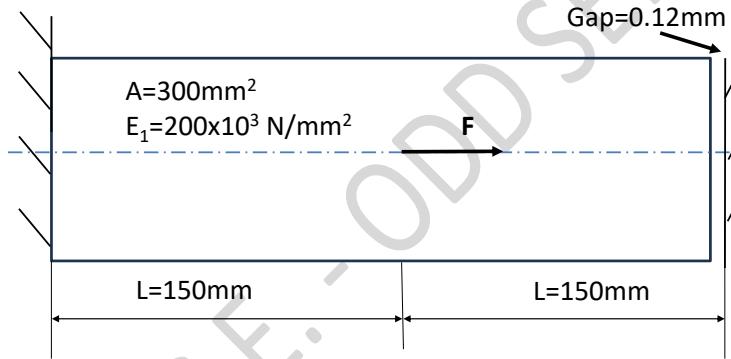
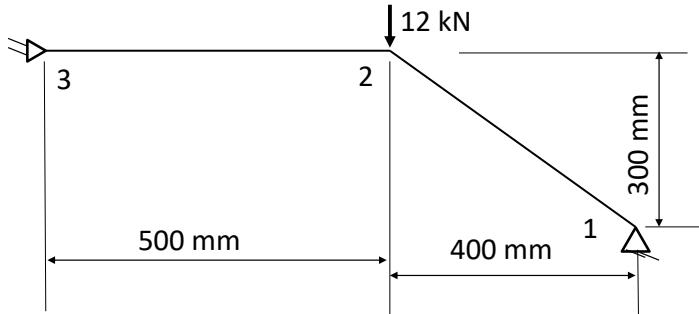
January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: V

Branch: Aerospace Engineering



Duration: 3 hrs.




Course Code: 23AS5PEFEM / 22AS5PEFEM

Max Marks: 100

Course: Finite Element Method

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks		
1	a)	Illustrate and discuss the following 1) Normal stresses. 2) Torsional stress. 3) Direct shear stress	CO1	PO1	06		
	b)	Derive equations of equilibrium for 2-dimensional stress field.	CO1	PO1	06		
	c)	Obtain the displacement at nodes 1, 2 and 3 for the spring system shown in Fig. 1. The outward force acting at node 3 is 150 N.					
			CO1	PO2	08		
Fig. 1							
OR							
2	a)	For the following beam shown in Fig. 2 obtain an expression for deflection at the point of application of load. Take the inertia of the beam as I and Young's modulus as E .					
			CO1	PO2	10		
Fig. 2							
	b)	Discuss the following stress-strain conditions with relevant sketch and equations. 1. Plane stress 2. Plane strain	CO1	PO1	06		
	c)	List the applications of FEM in aerospace field.	CO1	PO1	04		

UNIT – II					
3	a)	What is banded stiffness matrix for linear bar element? State the properties of the banded matrix.	CO2	PO1	05
	b)	For the stepped bar shown in Fig. 3, determine the nodal displacements, element strains and stresses. The temperature rise in the bar is 30°C and the value of $F=400 \times 10^3 \text{ N}$.	CO2	PO2	15
 Fig. 3					
OR					
4	a)	A bar of uniform cross section shown in Fig. 4 is subjected a central loading of $F=600 \text{ kN}$. Estimate the nodal displacements, element strains and stresses. Also determine the support reactions.	CO2	PO2	15
 Fig. 4					
	b)	Explain the penalty technique of FE solution.	CO2	PO1	05
UNIT – III					
5	a)	Differentiate between bar and truss elements.	CO3	PO1	03
	b)	For the following two element truss shown in Fig. 5, determine the nodal displacements and element stresses. Take $E=2 \times 10^5 \text{ N/mm}^2$, Area of both elements as 200 mm^2 .	CO3	PO2	17
 Fig. 5					

OR

6 a) A beam fixed at one end and supported by roller at the other end carrying a point load as shown in Fig. 6. Taking Young's modulus as 200 GPa and area moment of inertia $I=24\times10^{-6}$ m⁴, determine the deflection and slope and the mid-span of the beam.

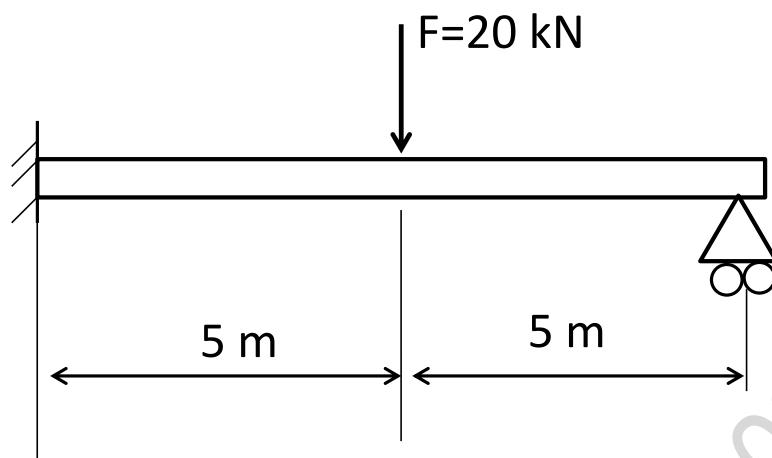


Fig. 6

CO3 PO2

12

b) Derive the Hermite shape functions used for beam analysis. Also show their physical forms.

CO3 PO1

08

UNIT - IV

7 a) Derive the strain-displacement matrix for 2-dimensional CST element.

CO4 PO1

12

b) For the following triangular CST element shown in Fig. 7, determine the jacobian and the strain-displacement matrix.

CO4 PO1

08

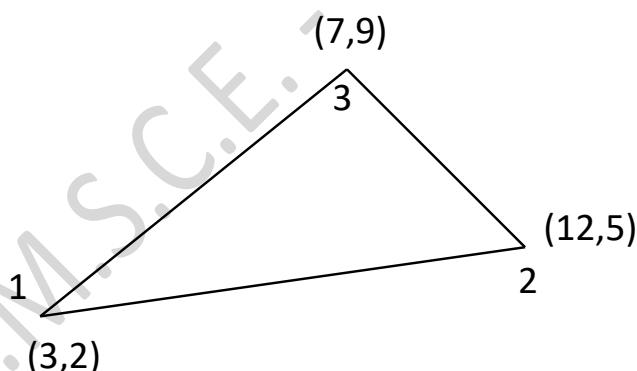


Fig. 7

OR

8 a) What is solution convergence for FE analysis? Discuss different methods of achieving convergence.

CO4 PO1

06

b) With shape functions illustrate the higher order triangular and quadrilateral elements.

CO4 PO1

06

c) For the CST element with distributed pressure shown in Fig. 8, estimate the equivalent point loads at the nodes 1 and 2.

			CO4	PO2	08
UNIT - V					
9	a)	Obtain 1-dimensional governing equation for heat conduction through the wall with heat generation.	CO4	PO1	06
	b)	Solve for temperature distribution in the composite wall shown in Fig. 9.	CO4	PO2	14
Fig. 9					
OR					
10	a)	Give the mass matrices for the bar and CST elements.	CO4	PO1	06
	b)	Determine eigen values for the stepped bar shown in Fig. 10. Take E=200 GPa, density ρ= 7830 kg/m³.	CO4	PO2	14
