

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 22AS3PCFMS

Course: FLUID MECHANICS

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Define the following i) Solids and fluids ii) Intensive properties and extensive properties. Explain with examples iii) Mass density iv) Specific weight v) Vapour pressure	CO 1	PO 1	10
		b)	Derive an expression for total pressure and center of pressure on an inclined surface.	CO 2	PO 1 PO 2	10
OR						
	2	a)	Define the following i) Buoyancy ii) Cavitation iii) Newtonian and non-Newtonian fluid iv) Kinematic viscosity	CO 1	PO 1	8
		b)	State Pascal's Law and derive an expression for the following i) Pressure at a point ii) Variation of pressure with depth.	CO 2	PO 1	12
UNIT - II						
	3	a)	Briefly describe about velocity potential function and stream function and its relations in terms of equation.	CO 1	PO 1	8
		b)	The stream function for a dimensional flow is given by $\Psi = 2xy$. Calculate the resultant velocity at P (3,4). Also, the velocity potential function ϕ .	CO 3	PO 1 PO 2	12
OR						
	4	a)	Derive continuity equation for a 3D flow and deduce an expression considering unsteady and incompressible flow.	CO 2	PO 1	10

	b)	Explain any five different types of flows in detail with neat sketches.	CO 1	PO 1	10
		UNIT - III			
5	a)	State Bernoulli's theorem for steady flow of an incompressible fluid and derive an expression for Bernoulli's equation. Write down all the assumptions involved in its derivation.	CO 2	PO 1 PO 2	12
	b)	Differentiate between Venturi meter and Orifice meter with neat sketches.	CO 1	PO 1	8
		OR			
6	a)	Write a short note on how velocity is measured using pitot-static tube.	CO 1	PO 1	8
	b)	An oil of specific gravity 0.8 is flowing through a venturi meter having inlet diameter 20 cm and throat diameter of 10 cm. The oil-mercury differential manometer shows a reading of 25 cm. Calculate the discharge of oil through the horizontal venturi meter. Take co-efficient of discharge as 0.98.	CO 3	PO 1 PO 2	12
		UNIT - IV			
7	a)	Define Reynold's number and what is the significance of it.	CO 1	PO 1	4
	b)	Deduce an expression for the Hagen-Poiseuille equation considering viscous fluid flow through a circular pipe.	CO 2	PO 1 PO 2	16
		OR			
8	a)	Describe the development of flow in pipes and its significance.	CO 1	PO 1	6
	b)	Derive an expression for Darcy-Weisbach equation with proper assumptions.	CO 2	PO 1 PO 2	14
		UNIT - V			
9	a)	i) Explain the terms favorable and adverse pressure gradient. Describe flow separation phenomenon with appropriate diagram. ii) Define boundary layer thickness.	CO 1	PO 1	8
	b)	Explain the procedure of dimensional analysis using the Buckingham Pi Theorem with an example.	CO 3	PO 1 PO 2	12
		OR			
10	a)	Explain the propagation of sound waves in different Mach regions.	CO 1	PO 1	10
	b)	Prove that velocity of sound $c=\sqrt{\gamma RT}$ where, R is gas constant, T is the temperature and γ is specific heat ratio.	CO 3	PO 1 PO 2	10
