

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

August 2024 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 23AS3PCFMS

Course: FLUID MECHANICS

Semester: III

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	i) Define pressure and what are the different types of pressures? ii) Define compressibility and derive the expression for isothermal compressibility.	CO 1	PO 1	8
	b)	A plate 0.025 mm distant from a fixed plate, moves at 60 cm/s and requires a shear stress of 2 N/m ² to maintain this speed (Figure 1). Determine the fluid viscosity between the plates.	CO 1	PO 1 PO 2	5
	c)	Determine the intensity of shear of an oil having viscosity = 0.1 Ns/m ² . The oil used is for lubricating the clearance between a shaft of diameter 10 cm and its journal bearing. The clearance is 1.5 mm and the shaft rotates at 150 rpm.	CO 1	PO 1 PO 2	7
OR					
2	a)	Define the following i) Metacentric height ii) Buoyancy iii) Centre of pressure iv) Vapour pressure and cavitation v) Newtonian and non-Newtonian fluid	CO 1	PO 1	10
	b)	The surface tension of water in contact with air at 20°C is 0.0725 N/m. The pressure inside a droplet of water is to be 0.02 N/cm ² greater than the outside pressure. Calculate the diameter of the droplet of water.	CO 1	PO 1 PO 2	5
	c)	A manometer is used to measure the pressure of a gas in a tank. The fluid used has a specific gravity of 0.85, and the manometer	CO 1	PO 1 PO 2	5

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.
Revealing of identification, appeal to evaluator will be treated as malpractice.

		<p>column height is 55 cm, as shown in Figure 2. If the local atmospheric pressure is 96 kPa, determine the absolute pressure within the tank.</p>		
		UNIT - II		
3	a)	Derive continuity equation for a 3-dimensional flow and deduce an expression considering unsteady and incompressible flow.	CO 1 PO 1 PO 2	10
	b)	The velocity vector in a fluid flow is given $\vec{V} = 4x^3\hat{i} - 10x^2y\hat{j} + 2tk$. Find the velocity and acceleration of a fluid particle at (2, 1, 3) at time t = 1.	CO 1 PO 1 PO 2	10
		UNIT - III		
4	a)	An oil of specific gravity 0.8 is flowing through a venturi meter having inlet diameter 20 cm and throat diameter of 10 cm. The oil-mercury differential manometer shows a reading of 25 cm. Calculate the discharge of oil through the horizontal venturi meter. Take co-efficient of discharge as 0.98.	CO 4 PO 1 PO 2 PO 4	10
	b)	State Bernoulli's theorem for steady flow of an incompressible fluid and derive an expression for Bernoulli's equation. Write down all the assumptions involved in its derivation.	CO 2 PO 1 PO 2	10
		UNIT - IV		
5	a)	Deduce an expression for the Hagen-Poiseuille equation considering viscous fluid flow through a circular pipe.	CO 2 PO 1 PO 2	16
	b)	Define Reynold's number. What is the significance of it?	CO 2 PO 1 PO 2	4
		OR		
6	a)	Define and write the expressions for displacement, momentum and energy boundary layer thicknesses.	CO 2 PO 1 PO 2	6
	b)	Derive an expression for Darcy-Weisbach equation and Chezy's formula.	CO 2 PO 1 PO 2	14
		UNIT - V		
7	a)	Write short note on <ol style="list-style-type: none"> Geometric similarity Kinematic similarity Dynamic similarity 	CO 3 PO 1	8
	b)	Write down in detail description of the six steps that comprise the method of repeating variables.	CO 3 PO 1 PO 2	12
