

U.S.N.									
--------	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

May 2023 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 22AS3PCIAE

Course: Introduction to Aerospace Engineering

Semester: III

Duration: 3 hrs.

Max Marks: 100

Date: 12.05.2023

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I

1 a) List out, with a sketch, and explain the various major parts of an airplane and their function. **5**

b) Trace the development of Civil Aviation in India starting from 1912 till the launch of the ‘Open Sky Policy’ in 1994. **5**

c) An aircraft cruises at a True Airspeed of 100 m/s at an altitude (h) of 4000 m above the sea-level. The outside air temperature (T_o) is 262.15 K. The speed of sound at this altitude (a_s) is 324.57 m/s. At ISA conditions the Lapse rate (L) is 0.0065K/m, the temperature (T_o) is 288.15K at sea-level, R = specific gas constant for air = 287.05 J/(kg K), atmospheric pressure (P_o) = 101325 Pa and density as 1.226 kg / m³

- Calculate the air pressure P_s at the altitude of 4000 m above sea-level.
- Calculate the air density ρ_s at the altitude of 4000 m above sea-level.
- Calculate the Mach number: M

UNIT - II

2 a) Sketch a typical Boundary Layer and mark the salient features. Give a brief explanation about its characteristics. **5**

b) An airplane with a weight of 33,181 kg is cruising at 152 m/s at an altitude of 9144 m. Airplane data: $S = 88 \text{ m}^2$, $AR = 6$, $C_{D,0}=0.015$ and $K = 0.08$.

- Write the Drag Polar
- Calculate the Coefficient of Drag
- Calculate the Thrust required

Assume ISA conditions.

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

c) An airplane weighing 1,70,000 N has a Semi Span = 10m and AR = 10. The drag polar is given as $C_D = 0.017 + 0.04 C_L^2$. Obtain the thrust required and power required for a rate of climb of 2000 m/min at a speed of 540 kmph at 3km altitude. Assume ISA conditions. 5

OR

3 a) Give a brief account of the Landing Performance of an aircraft highlighting the various types of braking systems used. 5

b) An aircraft weighing 25,000 kg has a wing area of 70 m^2 and its drag polar is $C_D = 0.015 + 0.04 C_L^2$. Calculate at Sea Level conditions— 10

1. Minimum Thrust required for straight and level flight

2. TAS for the minimum thrust

3. Minimum Power required for straight and level flight

4. TAS for the minimum power

Assume ISA Conditions.

c) A Propeller driven aircraft is cruising at near sea level conditions at a speed of 500 kmph. Airplane data: AR = 7, Span = 20 m, Take-off Weight = 5 Tons, $K = 0.07$, $C_{D,0} = 0.015$, Power SFC = $7.58 \times 10^{-8} \text{ N/s/Watt}$, Landing Weight = 4.5 Tons. Calculate the Endurance. Assume ISA conditions. 5

Caution: The weight to be considered in Newtons.

UNIT - III

4 a) The GE J79 turbojet produces a thrust of 44482 N. The inlet diameter is 1m. If the airplane equipped with the J79 engine is flying at standard sea level conditions at 305 m/s, estimate – 6

(i) The velocity of the exhaust relative to the airplane
(ii) The propulsive efficiency

b) With the help of appropriate sketches, explain the working principle of a 4-Stroke Reciprocating Engine. 5

c) With the help of appropriate sketches explain the utility of the Dihedral angle. 4

d) A spacecraft's engine ejects mass at a rate of 30 kg/s with an exhaust velocity of 3,100 m/s. The pressure at the nozzle exit is 5 kPa and the exit area is 0.7 m^2 . What is the thrust of the engine in a vacuum? 5

UNIT - IV

5 a) Explain briefly the semi-monocoque construction of a fuselage and wing structure of an aircraft with simple sketches. **10**

b) Give an account of the Limit and Ultimate loads used for sizing the various airframe members. **5**

c) Give a brief account of the constructional features of the Canopy and a Windshield highlighting their thicknesses. **5**

OR

6 a) Explain clearly the internal constructional features of the Wing and Fuselage stating the loads transferred by them. **10**

b) State the advantages of aluminum which makes it suitable for aircraft industry. **5**

c) Justify the usage of Composite materials over metallic materials in the construction of the airframe. Mention the names of two Composite materials used in the aircraft industry. **5**

UNIT - V

7 a) Write an account about the improvement in the materials used for airframe construction and the advancement in manufacturing methods stating what these advancements have resulted in. **10**

b) Describe briefly how an aircraft can be made crashworthy and draw a sketch to illustrate the concept. **5**

c) Give an account of some of the major National Aerospace Programs that are presently in progress in India and mention some of the major Public and Private Sector industries which are involved in these programs. **5**
