

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: III

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 23AS3PCMAE / 22AS3PCMAE

Max Marks: 100

Course: Materials for Aerospace Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	What are the key factors considered for aerospace materials selection? Discuss.	CO1	PO 1, 7	06
	b)	Briefly discuss the advantages and disadvantages of polymers for aerospace applications. Differentiate thermosets and thermoplastics and elastomer polymers.	CO3	PO1, 2	09
	c)	With the help of an example, explain the effect of load and temperature on shape memory effect in materials. Mention three possible applications of shape memory alloys.	CO2	PO1, 2	05
OR					
2	a)	What are intermetallic compounds? Outline their applications.	CO2	PO1, 2	04
	b)	Briefly describe corrosion process. Explain the corrosion protection / avoidance methods available for aircraft materials.	CO2	PO1, 2	08
	c)	Explain the concept of stealth in aircraft engineering. Discuss the role of materials in implementing stealth technology.	CO3	PO1, 2	08
UNIT - II					
3	a)	Discuss the role of aluminium alloys in aircraft applications. Also give the IADS classification of aluminium alloys.	CO2	PO1, 2	06
	b)	Explain the thermal ageing process of aluminum alloys.	CO2	PO1, 2	06
	c)	Differentiate non-age-hardenable and age-hardenable aluminium alloys with examples.	CO2	PO1, 2	08
OR					
4	a)	What are the advantages and disadvantages of using titanium alloys for aerospace applications?	CO2	PO1, 2	05
	b)	Briefly discuss the characteristics and applications of alpha, beta and combined alpha - beta titanium alloys.	CO2	PO1, 2	08

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Why is copper used as an alloying element? In the context of aerospace applications, briefly discuss the role played by copper alloys.	CO2	PO1, 2	07
UNIT - III					
5	a)	Write a note on the properties and applications of maraging steels for aircraft applications	CO2	PO1, 2	06
	b)	Briefly discuss the microstructural phases of steels.	CO2	PO1	07
	c)	Discuss the characteristics and applications of Cobalt-based super alloys.	CO2	PO1	07
OR					
6	a)	Write a note on the properties and applications of stainless steels	CO2	PO1, 2	06
	b)	Briefly discuss the types, properties and applications of low-alloy steels	CO2	PO1	07
	c)	Discuss the characteristics and applications of nickel-based super alloys.	CO2	PO1	07
UNIT - IV					
7	a)	What is a ceramic matrix composite? Enumerate their applications in aircraft structures.	CO3	PO1	06
	b)	Explain the production process and properties of carbon fibers	CO3	PO1	06
	c)	With a neat schematic, briefly explain the manufacturing of metal matrix composites.	CO3	PO1	08
OR					
8	a)	What is a cermet? Discuss their use for aircraft applications.	CO3	PO1	06
	b)	Classify and discuss various fibers and matrix materials used in making of composites.	CO3	PO1	07
	c)	Bring out the detailed applications of composite materials in aerospace industry.	CO3	PO1	07
UNIT - V					
9	a)	Explain the concept of strain hardening with a neat sketch.	CO3	PO1	06
	b)	Illustrate and explain the salient aspects of a tension test.	CO3	PO1	06
	c)	Briefly explain any two non-destructive test methods employed to assess flaws in materials.	CO3	PO1	08
OR					
10	a)	Explain Bauschinger's effect with a neat sketch.	CO3	PO1	06
	b)	Illustrate and discuss following material tests. i) Bending test ii) Torsion test iii) Shear test iv) Hardness test	CO3	PO1	08
	c)	With the help of relevant plots, compare the stress-strain behavior of brittle and ductile materials under tensile loads.	CO3	PO1	06
