

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

December 2023 Supplementary Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 22AS4PCBAD

Course: Basic Aerodynamics

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the momentum equations and hence deduce the Euler equations with all the assumptions involved in it.	<i>CO1</i>	<i>PO1</i>	8
	b)	Show that the pressure coefficient on the surface of a circular cylinder of radius R in a uniform stream (U_∞), with a circulation Γ around the cylinder, has the form $C_p = 1 - \left(4\sin^2\theta + \frac{2\Gamma \sin \theta}{\pi RV_\infty} + \left(\frac{\Gamma}{2\pi RV_\infty} \right)^2 \right)$	<i>CO1</i>	<i>PO1</i>	8
	c)	Consider the lifting flow over a circular cylinder. The lift coefficient is 4π . Calculate the peak (negative) pressure coefficient.	<i>CO1</i>	<i>PO2</i>	4
UNIT - II					
2	a)	Derive $C_l = 2\pi\alpha$, where α is angle of attack for a symmetric airfoil using thin airfoil theory	<i>CO2</i>	<i>PO1</i>	10
	b)	Consider an NACA 0012 airfoil with a chord of 0.64 m in an airstream at standard sea level conditions. The freestream velocity is 70 m/s. The lift per unit span is 1254 N/m. Calculate the angle of attack assuming the thin airfoil theory	<i>CO2</i>	<i>PO2</i>	6
	c)	Write short notes on Kelvin's Circulation theorem	<i>CO2</i>	<i>PO1</i>	4
OR					
3	a)	Using thin airfoil theory for symmetric airfoil, show that center of pressure and aerodynamic center coincide with each other.	<i>CO2</i>	<i>PO1</i>	10
	b)	Write short notes on Kutta condition. Show that, for a vortex sheet, 'there is a discontinuous change in the tangential component of velocity across the sheet and is equal to the local sheet strength'.	<i>CO2</i>	<i>PO1</i>	6
	c)	Describe nomenclature of an airfoil. Considering NACA 4 digit series 0012, write down the significance of each digit with neat sketches.	<i>CO2</i>	<i>PO2</i>	4

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - III					
4	a)	Define Biot-Savart law and derive the expression for the velocity induced by (1) Infinite vortex filament (2) Semi-infinite vortex filament	CO3	PO1	10
	b)	Considering elliptical lift distribution $\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$ and derive an expression for induced angle of attack $\alpha_i = \frac{C_L}{\pi AR}$ where AR is aspect ratio, C_L is coefficient of lift, Γ_0 is maximum circulation at the origin, b is wing span and y is any location along the span.	CO3	PO2	10
UNIT - IV					
5	a)	Consider a complex potential function given as $w(z) = Uz + \frac{m}{2\pi} \ln(z)$ Calculate the following a) Velocity potential and stream function b) Velocity components c) Stagnation points d) Sketch stream lines and equi-potential lines.	CO4	PO2	10
	b)	What is method of singularities? Explain it with an example	CO4	PO1	5
	c)	Under what conditions does flow over circle in z plane ($z=x+iy$) becomes flow over flat plate in ζ plane ($\zeta=\xi+i\eta$) when Joukowski transformation ($f(z) = z + \frac{c^2}{z}$) is applied. Assume the radius of cylinder is r .	CO4	PO1	5
UNIT - V					
6	a)	What is boundary layer and write the differences between laminar boundary layer and turbulent boundary layer?	CO5	PO1	10
	b)	Deduce boundary layer equations from Navier stokes equations using order of magnitude analysis using the boundary layer assumptions. Assume the flow to be two dimensional.	CO5	PO1	10
OR					
7	a)	Explain how flow separation happens over a cylinder and indicate the favorable and unfavorable pressure gradients.	CO5	PO1	10
	b)	Derive the similarity solution (Blasius equation) for flow over a flat plate considering the laminar boundary layer.	CO5	PO1	10
