

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 22AS4PCBAD

Max Marks: 100

Course: Basic Aerodynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Explain lifting flow over a circular cylinder from fundamental flows of potential theory. Deduce the</p> <ul style="list-style-type: none"> (i) Stream function (ii) Velocity components (iii) Locate the stagnation points (iv) Pressure coefficient 	CO1	PO1	10
	b)	<ul style="list-style-type: none"> (i) Define vorticity and circulation. Define the physical significance of vorticity and circulation and derive the mathematical derivation between the them. (ii) Consider the lifting flow over a circular cylinder. The lift coefficient is 5. Calculate the peak (negative) pressure coefficient. 	CO1	PO2	10
OR					
2	a)	<p>Derive momentum equations and deduce Euler equations with all the assumptions involved in it</p>	CO1	PO1	10
	b)	<p>Show that the pressure coefficient on the surface of a circular cylinder of radius R in a uniform stream (U_∞), with a circulation Γ around the cylinder, has the form</p> $C_p = 1 - \left(4\sin^2\theta + \frac{2\Gamma \sin \theta}{\pi R V_\infty} + \left(\frac{\Gamma}{2\pi R V_\infty} \right)^2 \right)$	CO1	PO2	10
UNIT - II					
3	a)	<p>Define aerodynamic center and center of pressure and estimate the location of center of pressure for a symmetric airfoil based on the assumptions of thin airfoil theory.</p>	CO2	PO1	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	<p>Consider a thin flat plate at angle of attack 5^0. Calculate the following</p> <ul style="list-style-type: none"> (i) Lift coefficient (ii) Moment coefficient about the leading edge (iii) Moment coefficient about the quarter-chord point 	CO2	PO2	10
		OR			
4	a)	<p>(i) Define Kelvin circulation theorem. Explain in detail the formation of starting vortex with neat sketches.</p> <p>(ii) Consider an NACA 2412 airfoil with a chord of 0.64 m in an airstream at standard sea level conditions. The freestream velocity is 70 m/s. The lift per unit span is 1254 N/m. Calculate the drag per unit span and strength of the steady-state starting vortex.</p>	CO2	PO2	10
	b)	<p>(i) Differentiate between symmetric and unsymmetric airfoil. Explain how the coefficient of lift varies with angle of attack for both symmetric and unsymmetric airfoil.</p> <p>(ii) What are high lift airfoils. Explain various types of high lift airfoils with neat sketches, that are used to enhance the lift characteristics.</p>	CO2	PO1	10
		UNIT - III			
5	a)	<p>(i) What is the best spanwise lift distribution for a wing? and how do you arrive at such a conclusion.</p> <p>(ii) Consider an elliptical wing with an aspect ratio of 8. Calculate the lift and induced drag coefficients for the wing when its induced angle of attack is given as 5^0</p>	CO2	PO2	10
	b)	<p>(i) Briefly describe the algorithm used for source panel method and vortex lattice method.</p> <p>(ii) Write down the salient features of Helmholtz Theorem</p>	CO2	PO1	10
		OR			
6	a)	<p>Define Biot-Savart law and derive the expression for the velocity induced by</p> <ul style="list-style-type: none"> (1) Infinite vortex filament (2) Semi-infinite vortex filament 	CO2	PO1	10
	b)	<p>Considering elliptical lift distribution $\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2}$, derive an expression for induced angle of attack</p> $\alpha_i = \frac{C_L}{\pi AR}$ <p>where AR is aspect ratio, C_L is coefficient of lift, Γ_0 is maximum circulation at the origin, b is wing span and y is any location along the span</p>	CO2	PO1	10

UNIT - IV					
7	a)	Under what conditions does flow over circle in z plane ($z=x+iy$) becomes flow over unsymmetric airfoil in ζ plane ($\zeta=\xi+i\eta$) when Joukowski transformation ($f(z) = z + \frac{c^2}{z}$) is applied. Assume the radius of cylinder is r .	CO2	PO2	10
	b)	Using method of singularities derive an expression for flow happening in kitchen sink and calculate the following a) Velocity potential and stream function b) Velocity components c) Stagnation points d) Sketch stream lines and equi-potential lines	CO2	PO1	10
OR					
8	a)	What is method of singularities? Explain it with an example	CO2	PO1	10
	b)	Under what conditions does flow over circle in z plane ($z=x+iy$) becomes flow over symmetric airfoil in ζ plane ($\zeta=\xi+i\eta$) when Joukowski transformation ($f(z) = z + \frac{c^2}{z}$) is applied. Assume the radius of cylinder is r .	CO2	PO2	10
UNIT - V					
9	a)	Differentiate between inviscid and viscous flows and explain flow separation on an airfoil in detail with neat sketches?	CO3	PO1	10
	b)	Define boundary layer thickness. Derive formula for displacement thickness and momentum thickness.	CO3	PO1	10
OR					
10	a)	Write down boundary layer equations and prove that the pressure gradient across the boundary layer remains constant	CO3	PO1	10
	b)	What are the characteristics of boundary layer? Sketch velocity temperature profiles across the boundary layer.	CO3	PO1	10
