

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: IV

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 22AS4PCBAD

Max Marks: 100

Course: Basic Aerodynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	(i) Derive continuity equation considering finite control volume method. (ii) Consider the lifting flow over a circular cylinder with a diameter of 0.5 m. The freestream velocity is 25 m/s, and the maximum velocity on the surface of the cylinder is 75 m/s. The freestream conditions are those for a standard altitude of 3 km. Calculate the lift per unit span on the cylinder.		CO1	PO2	10	
		b)	Show that the pressure coefficient on the surface of a circular cylinder of radius R in a uniform stream (U_∞), with a circulation Γ around the cylinder, has the form $C_p = 1 - \left(4\sin^2\theta + \frac{2\Gamma \sin \theta}{\pi RV_\infty} + \left(\frac{\Gamma}{2\pi RV_\infty} \right)^2 \right)$		CO1	PO1	10	
			OR					
	2	a)	Write short notes on following a) Vorticity and circulation and relationship between them b) What is doublet flow, derive stream function and velocity for it		CO1	PO1	10	
		b)	(i) Derive momentum equations and deduce Euler equations with all the assumptions involved in it. (ii) Consider the lifting flow over a circular cylinder. The lift coefficient is 4π . Calculate the peak (negative) pressure coefficient.		CO1	PO2	10	
			UNIT - II					
	3	a)	Derive $C_l = 2\pi\alpha$, where α is angle of attack for a symmetric airfoil using thin airfoil theory.		CO2	PO1	10	
		b)	Consider an NACA 0012 airfoil with a chord of 0.64 m in an airstream at standard sea level conditions. The freestream velocity is 70 m/s. The lift per unit span is 1254 N/m. (i) Calculate the angle of attack assuming the thin		CO2	PO2	10	

		<p>(ii) airfoil theory</p> <p>Calculate the moment per unit span about the aerodynamic center.</p>			
		OR			
4	a)	Using thin airfoil theory for symmetric airfoil, show that center of pressure and aerodynamic pressure coincide with each other at one fourth of the chord.	CO2	PO1	10
	b)	Write short notes on Kutta condition. Show that, for a vortex sheet, 'there is a discontinuous change in the tangential component of velocity across the sheet and is equal to the local sheet strength'.	CO2	PO1	6
	c)	With neat sketches, describe nomenclature of an airfoil and write the characteristics of airfoil.	CO2	PO1	4
		UNIT - III			
5	a)	Explain the formation of primary and secondary vortices in subsonic flow over delta wings with neat sketches. Also plot spanwise coefficient of pressure (C_p) distribution for a delta wing on both upper and lower surfaces.	CO2	PO1	10
	b)	Considering elliptical lift distribution given as $\Gamma(y) = \Gamma_0 \sqrt{1 - \left(\frac{2y}{b}\right)^2},$ where Γ_0 is maximum circulation at the origin, b is wing span and y is any location along the span Derive an expression for induced angle of attack and induced drag.	CO2	PO1	10
		OR			
6	a)	Define Biot-Savart law and derive the expression for the velocity induced by (1) Infinite vortex filament (2) Semi-infinite vortex filament	CO2	PO1	10
	b)	Describe source panel method and vortex lattice method long with their algorithm used to their respective strengths	CO2	PO1	10
		UNIT - IV			
7	a)	Consider a complex potential function given as $w(z) = U \left(z + \frac{a^2}{z} \right)$ where a is constant Calculate the following a) Velocity potential and stream function b) Velocity components c) Stagnation points d) Sketch stream lines and equi-potential lines	CO2	PO2	10
	b)	Under what conditions does flow over circle in z plane ($z=x+iy$) becomes flow over symmetric airfoil in ζ plane ($\zeta=\xi+i\eta$) when Joukowski transformation ($f(z) = z + \frac{c^2}{z}$) is applied. Assume the radius of cylinder is r.	CO2	PO1	10

OR					
8	a)	Under what conditions does flow over circle in z plane ($z=x+iy$) becomes flow over ellipse in ζ plane ($\zeta=\xi+i\eta$) when Joukowski transformation ($f(z) = z + \frac{c^2}{z}$) is applied. Assume the radius of cylinder is r .	CO2	PO1	10
	b)	Consider a complex potential function given as $w(z) = Uz + \frac{m}{2\pi z}$ Calculate the following <ul style="list-style-type: none"> a) Velocity potential and stream function b) Velocity components c) Stagnation points d) Sketch stream lines and equi-potential lines 			10
UNIT - V					
9	a)	What is boundary layer and write differences between laminar boundary layer and turbulent boundary layer.	CO3	PO1	10
	b)	Derive similarity solution (Blasius equation) for flow over a flat plate considering the laminar boundary layer.	CO3	PO1	10
OR					
10	a)	Explain how flow separation happens over a cylinder and indicate the favorable and unfavorable pressure gradients.	CO3	PO1	10
	b)	Derive an expression for displacement thickness, momentum thickness and energy thickness for a boundary layer	CO3	PO1	10
