

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

September / October 2023 Semester End Main Examinations

Programme: B.E.

Branch: Aerospace Engineering

Course Code: 22AS4PCBAD

Course: Basic Aerodynamics

Semester: IV

Duration: 3 hrs.

Max Marks: 100

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	<i>CO</i>	<i>PO</i>	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive the equations for stream function ψ and velocity potential ϕ for a uniform flow superimposed with source and a sink flow.	<i>CO1</i>	<i>PO1</i>	10
		b)	Find the expression for stream function for lifting flow over a cylinder and give the lift per unit span and drag for the same?	<i>CO1</i>	<i>PO1</i>	10
			UNIT - II			
	2	a)	Identify and explain the salient features of an airfoil with a neat sketch.	<i>CO2</i>	<i>PO1</i>	06
		b)	Explain the types and working of different high lift devices used on airplanes/aircrafts with neat sketches.	<i>CO2</i>	<i>PO1</i>	08
		c)	Describe the significance of Kutta condition and prove that the velocities on the top and bottom surface at the trailing edge of an airfoil are equal.	<i>CO2</i>	<i>PO1</i>	06
			OR			
	3	a)	List the principal aerodynamic characteristics of an airfoil. Explain the variation of the aerodynamic characteristics of the airfoil subjected to fluid flow for a wide range of angle of attacks. Illustrate the same with neat sketches.	<i>CO2</i>	<i>PO1</i>	08
		b)	Derive the fundamental equation of thin airfoil theory which states that camber line to be a streamline of the flow.	<i>CO2</i>	<i>PO1</i>	12
			UNIT - III			
	4	a)	Explain Kelvin's circulation theorem and the effect of starting vortex on the circulation over an airfoil.	<i>CO3</i>	<i>PO1</i>	06
		b)	Derive the fundamental equation of classical thin airfoil theory for a symmetric airfoil.	<i>CO3</i>	<i>PO1</i>	10

	c)	Illustrate the Biot Savart law by using vortex filament.	CO3	PO1	04
UNIT - IV					
5	a)	Describe how Kutta-Joukowski transformations are used for understanding the principles of airfoil design.	CO4	PO1	10
	b)	Explain the wing body interferences in aerodynamics.	CO4	PO1	10
UNIT - V					
6	a)	Explain thermal boundary layer and derive the displacement thickness.	CO5	PO1	08
	b)	Consider the incompressible, two-dimensional flow over a flat plate at 0° angle of attack, such as sketched in figure below. For the flow with $\rho = \mu = \frac{dp_e}{dx} = 0$, derive the equations for boundary layer over the flat plate.	CO5	PO2	12
OR					
7	a)	Describe what is meant by boundary layer in fluid mechanics. Discuss the differences between the laminar and turbulent boundary layers and explain with illustration, how does the thickness of the boundary layer change as flow velocity increases?	CO5	PO1	10
	b)	Explain the important properties of boundary layer, with neat sketches and equations.	CO5	PO1	10
