

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: IV

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 23AS4PCLSA

Max Marks: 100

Course: Low Speed Aerodynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>Explain lifting flow over a circular cylinder from fundamental flows of potential theory. Deduce the</p> <p>(i) Stream function (ii) Velocity components (iii) Locate the stagnation points (iv) Pressure coefficient</p>	CO1	PO1	10
	b)	<p>(i) Define vorticity and circulation. Define the physical significance of vorticity and circulation and derive the mathematical relationship between them.</p> <p>(ii) Consider the lifting flow over a circular cylinder. The lift coefficient is 5. Calculate the peak (negative) pressure coefficient.</p>	CO1	PO2	10
UNIT - II					
2	a)	Define aerodynamic center and center of pressure and estimate the location of center of pressure for a symmetric airfoil based on the assumptions of thin airfoil theory.	CO2	PO1	10
	b)	<p>Consider a thin flat plate at an angle of attack of 5^0. Calculate the following</p> <p>(i) Lift coefficient (ii) Moment coefficient about the leading edge (iii) Moment coefficient about the quarter-chord point</p>	CO2	PO2	10
OR					
3	a)	<p>(i) Define Kelvin circulation theorem. Explain in detail the formation of starting vortex with neat sketches.</p> <p>(ii) Consider an NACA 2412 airfoil with a chord of 0.64 m in an airstream at standard sea level conditions. The freestream velocity is 70 m/s. The lift per unit span is</p>	CO2	PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

		1254 N/m. Calculate the drag per unit span and strength of the steady-state starting vortex.			
	b)	<p>(i) Differentiate between symmetric and unsymmetric airfoil. Explain the variation of coefficient of lift with angle of attack for both symmetric and unsymmetric airfoil.</p> <p>(ii) What are high lift airfoils. Explain various types of high lift airfoils with neat sketches that are used to enhance the lift characteristics.</p>	CO2	PO1	10
UNIT - III					
4	a)	<p>(i) What is the best spanwise lift distribution for a wing? and how do you arrive at such a conclusion.</p> <p>(ii) Consider an elliptical wing with an aspect ratio of 8. Calculate the lift and induced drag coefficients for the wing when its induced angle of attack is given as 5^0</p>	CO2	PO2	10
	b)	<p>(i) Briefly describe the algorithm used for source panel method and vortex lattice method.</p> <p>(ii) Write down the salient features of Helmholtz Theorem</p>	CO2	PO1	10
UNIT - IV					
5	a)	Under what conditions does flow over circle in z plane ($z=x+iy$) becomes flow over unsymmetric airfoil in ζ plane ($\zeta=\xi+i\eta$) when Joukowski transformation ($f(z) = z + \frac{c^2}{z}$) is applied. Assume the radius of circle is r .	CO2	PO2	10
	b)	<p>Using method of singularities derive an expression for flow happening in kitchen sink and calculate the following</p> <ol style="list-style-type: none"> Velocity potential and stream function Velocity components Stagnation points Sketch stream lines and equi-potential lines 	CO2	PO1	10
UNIT - V					
6	a)	Differentiate between inviscid and viscous flows and explain flow separation on an airfoil in detail with neat sketches.	CO3	PO1	10
	b)	Define boundary layer thickness. Derive an expression for displacement thickness and momentum thickness.	CO3	PO1	10
OR					
7	a)	Write the boundary layer equations and prove that the pressure gradient across the boundary layer remains constant	CO3	PO1	10
	b)	What are the characteristics of boundary layer? Sketch velocity and temperature profiles across the boundary layer.	CO3	PO1	10
