

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

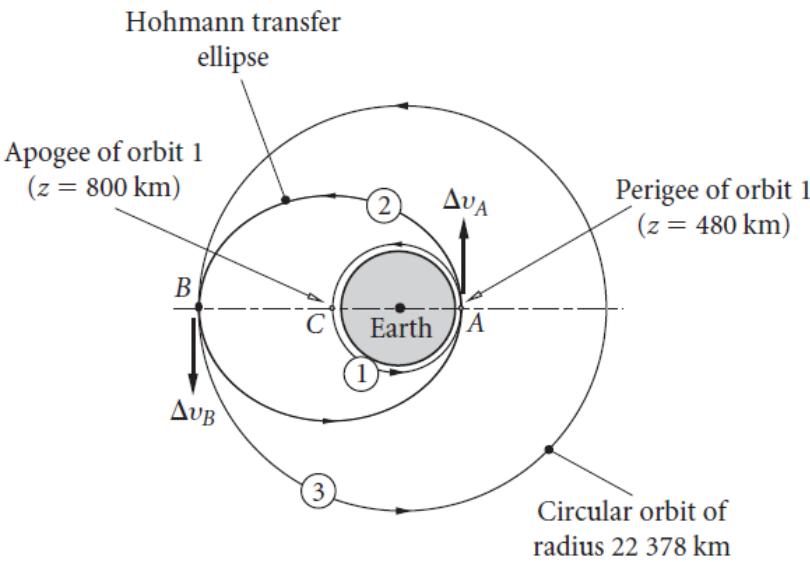
## January / February 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: V**

**Branch: Aerospace Engineering**

**Duration: 3 hrs.**


**Course Code: 23AS5PESPM**

**Max Marks: 100**

**Course: Space Mechanics**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

|                                                                                                                                                                                                       |                  |    | <b>UNIT - I</b>                                                                                                                                                                                                       |  |  | <b>CO</b> | <b>PO</b> | <b>Marks</b> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|-----------|-----------|--------------|
| <b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice. | 1                | a) | State and prove transport theorem.                                                                                                                                                                                    |  |  | CO1       | PO2       | <b>10</b>    |
|                                                                                                                                                                                                       |                  | b) | Define central force field. Describe three major characteristics of the central force field.                                                                                                                          |  |  | CO1       | PO1       | <b>10</b>    |
|                                                                                                                                                                                                       | <b>OR</b>        |    |                                                                                                                                                                                                                       |  |  |           |           |              |
|                                                                                                                                                                                                       | 2                | a) | What do you understand by inertial frame and non-inertial frame? Newton's laws of motions are applied to which frame of reference. What is a body-fixed frame? State whether it is an inertial or non-inertial frame. |  |  | CO1       | PO1       | <b>10</b>    |
|                                                                                                                                                                                                       |                  | b) | Derive the procedure of transformation of displacement vector from a fixed coordinate to a rotating coordinate system.                                                                                                |  |  | CO1       | PO2       | <b>10</b>    |
|                                                                                                                                                                                                       | <b>UNIT - II</b> |    |                                                                                                                                                                                                                       |  |  |           |           |              |
|                                                                                                                                                                                                       | 3                | a) | Write down Newton's law of gravitation. Describe the equation of motion of one body with respect to another under the mutual gravitational attraction.                                                                |  |  | CO2       | PO2       | <b>10</b>    |
|                                                                                                                                                                                                       |                  | b) | Show that, angular momentum associated with a body, moving relative to another body under mutual gravitational attraction, is constant.                                                                               |  |  | CO2       | PO2       | <b>10</b>    |
|                                                                                                                                                                                                       | <b>OR</b>        |    |                                                                                                                                                                                                                       |  |  |           |           |              |
|                                                                                                                                                                                                       | 4                | a) | Show that, for elliptic orbit,<br>(i) $l = a(1 - e^2)$<br>(ii) $b = a\sqrt{1 - e^2}$<br>(iii) $l = \frac{b^2}{a}$<br>(iv) $l = \frac{h^2}{\mu}$                                                                       |  |  | CO2       | PO2       | <b>20</b>    |

|   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |           |
|---|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|   |    | Where, $l$ = semi-latus rectum, $a$ = semi-major axis, $b$ =semi-minor axis, $e$ = eccentricity, $h$ = specific angular momentum, $\mu$ = Gravitational parameter.                                                                                                                                                                                                                                                                                                                                                                                                              |     |     |           |
|   |    | <b>UNIT - III</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |     |           |
| 5 | a) | Why trajectory transfer is required. Describe different types of trajectory transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CO3 | PO1 | <b>10</b> |
|   | b) | Show that for the same amount of velocity change, maximum energy is obtained only for the Hohmann transfer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CO3 | PO2 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |           |
| 6 | a) | <p>A spacecraft is in a 480 km by 800 km earth orbit (orbit 1 in Figure 1). Find (a) the <math>\Delta v</math> required at perigee A to place the spacecraft in a 480 km by 16 000 km transfer orbit (orbit 2); and (b) the <math>\Delta v</math> (apogee kick) required at B of the transfer orbit to establish a circular orbit of 16 000 km altitude (orbit 3).</p> <p>Gravitational parameter, <math>\mu=398\ 600\ km^3/s^2</math> and Radius of Earth, <math>R_E=6378\ km</math>.</p>  | CO3 | PO2 | <b>20</b> |
|   |    | <b>Figure 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |     |           |
|   |    | <b>UNIT - IV</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |     |           |
| 7 | a) | What do you understand by the stability of anybody? What are the different types of stabilities that a body undergoes?                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CO4 | PO1 | <b>10</b> |
|   | b) | What is torque-free motion? Derive the expression for absolute angular velocity $\omega$ along the three principal body axes considering rotational symmetry.                                                                                                                                                                                                                                                                                                                                                                                                                   | CO4 | PO2 | <b>10</b> |
|   |    | <b>OR</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |           |

|                 |    |    |                                                                                                                                                                                              |     |     |           |
|-----------------|----|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|                 | 8  | a) | Describe with a neat diagram the working principle of the Gyroscope. How the Gyroscope is useful in controlling the satellite attitude.                                                      | CO4 | PO1 | <b>10</b> |
|                 |    | b) | What is the difference between translation motion and rotational motion? Write down the equations used to describe the translation and rotational equations.                                 | CO4 | PO2 | <b>10</b> |
| <b>UNIT - V</b> |    |    |                                                                                                                                                                                              |     |     |           |
|                 | 9  | a) | Describe the rocket thrust equation. Comment on rocket performance based on the thrust equation.                                                                                             | CO5 | PO2 | <b>10</b> |
|                 |    | b) | (i) Write a short note on the despinning of satellites.<br>(ii) Demonstrate attitude drift of space vehicles.                                                                                | CO5 | PO1 | <b>10</b> |
| <b>OR</b>       |    |    |                                                                                                                                                                                              |     |     |           |
|                 | 10 | a) | Briefly describe any five types of rocket and space propulsion systems.                                                                                                                      | CO5 | PO1 | <b>10</b> |
|                 |    | b) | Draw free-body diagram of a rocket showing the various forces acting on it and derive an expression for downward range distance and altitude taking into account the curvature of the Earth. | CO5 | PO2 | <b>10</b> |

\*\*\*\*\*