

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

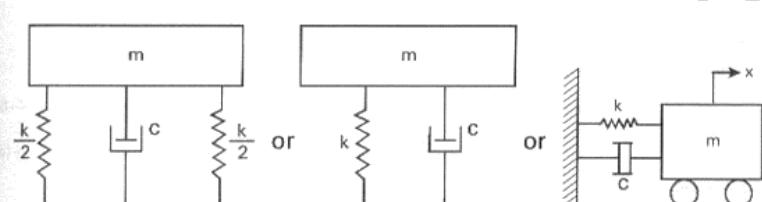
Programme: B.E.

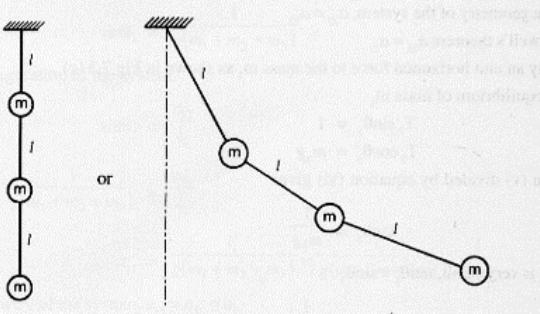
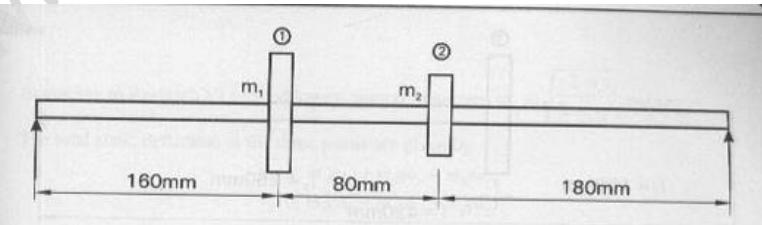
Semester: V

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 23AS5PCVTA / 22AS5PCVTA


Max Marks: 100



Course: Vibration Theory And Aeroelasticity

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Define i) Phase Difference ii) Degrees of Freedom iii) Simple Harmonic Motion iv) Free and Forced Vibration v) Damped and Undamped Vibrations	CO1	PO1, PO2	10
	b)	Derive an expression for amplitude by adding two simple harmonic motions. Also represent graphically.	CO1	PO1, PO2	10
OR					
2	a)	With a neat sketch explain the beats phenomenon and obtain its resultant motion.	CO1	PO1, PO2	10
	b)	Add the following harmonics analytically and check the solution graphically. $X_1 = 2 \cos (\omega t + 0.5)$ $X_2 = 5 \sin (\omega t + 1.0)$	CO1	PO1, PO2	10
UNIT - II					
3	a)	Derive the differential equation of motion and natural frequency of vibration of a spring mass system in vertical position by i) Newton's Method ii) Energy Method	CO2	PO1, PO2	10
	b)	A block of mass 0.05 kg is suspended from a spring having stiffness of 25 N/m. the block is displaced downwards from its equilibrium position through a distance of 2 cm and released with an upward velocity of 3 cm/sec. Determine i) Natural Frequency ii) Period of Oscillation iii) Maximum Velocity iv) Maximum acceleration v) Phase Angle	CO2	PO1, PO2	10
OR					
4	a)	Derive an expression for natural frequency of torsional vibration by newton method.	CO2	PO1, PO2	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	An instrument panel of natural period 0.1 seconds is excited by a step function 0.5 cm magnitude for a period of 0.075 second. Determine the response of the system.	CO2	PO1, PO2	10
		UNIT - III			
5	a)	Derive the Logarithmic decrement equation by formulating the under damped system.	CO2	PO1, PO2	10
	b)	<p>A machine of mass 20 kg is mounted on spring and dash pot as shown in fig.Q5b. The total spring stiffness is 10 N/mm and the total damping is 0.15 N/mm/sec. If the system is initially at rest and a velocity of 100 mm/sec is imparted to the mass, then determine</p> <p>i) Displacement and velocity of mass as a function of time ii) Displacement and velocity at time equal to one second</p>	CO2	PO1, PO2	10
		<p>Fig.Q.5b</p>			
		OR			
6	a)	Vibrating system consisting of a mass of 50 kg, a spring of stiffness 30 kN/m and a damper. Damping is 20% of the critical value. Determine i) Damping Factor ii) Critical Damping Coefficient iii) Logarithmic Decrement iv) Ratio of Two Consecutive Amplitudes v) Natural Frequency of Free Vibration vi) Natural Frequency of Damped Vibration.	CO2	PO1, PO2	10
	b)	A mass of 7.5 kg hangs from a spring and makes damped oscillations. The time for 60 oscillations is 35 secs and the ratio of first to seventh displacement is found to be 2.5. find i) Stiffness of Spring ii) Damping Resistance iii) If the oscillations were critically damped what is the damping resistance.	CO2	PO1, PO2	10
		UNIT - IV			
7	a)	Define transmissibility and derive an expression for the transmissibility ratio and the phase angle for transmitted force.	CO3	PO1, PO2	10
	b)	A mass of 10 kg suspended from one end of helical spring, the other end is fixed. The stiffness of spring is 10 N/mm. The viscous damping causes the amplitude to decrease 1/10 th of initial value in four complete oscillations. If a periodic force of 150 Cos 50 t N at	CO3	PO1, PO2	10

		the mass with vertical direction. Find the amplitude of forced vibration. What is its value at resonance.			
		OR			
8	a)	Explain briefly vibrometer and accelerometer.	CO3	PO1, PO2	10
	b)	A vibration picks up has a natural frequency of 7.5 Hz and a damping factor of 0.5. Determine the lowest frequency beyond which the amplitude can be measured within (i) 1% error (ii) 2% error.	CO3	PO1, PO2	10
		UNIT - V			
9	a)	Derive the equation of wing divergence speed.	CO4	PO1, PO2	10
	b)	What is aeroelasticity? Classify. Explain collars triangle or aero elasticity tetrahedron.	CO4	PO1, PO2	10
		OR			
10	a)	Determine the influence coefficients of a triple pendulum shown in the figure 10a.	CO4	PO1, PO2	10
		Fig.10a			
10	b)	Find the lowest natural frequency of transverse vibrations of the system shown in the figure by Rayleigh's method. Take $E = 196 \text{ GPa}$, $I = 10^{-6} \text{ m}^4$, $m_1 = 40 \text{ kg}$, $m_2 = 20 \text{ kg}$.	CO4	PO1, PO2	10
		Fig.10b			
