

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## October 2024 Supplementary Examinations

**Programme: B.E.**

**Semester: VI**

**Branch: Aerospace Engineering**

**Duration: 3 hrs.**

**Course Code: 22AS6PCAST**

**Max Marks: 100**

**Course: Aerospace Structures**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| UNIT - I                                                                                                                                                                                                     |    |                                                                                                                                                                                                                                                                                                                                                                                                   | CO | PO | Marks     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|-----------|
| 1                                                                                                                                                                                                            | a) | List basic structural members in aircraft structures and their functions.                                                                                                                                                                                                                                                                                                                         | 1  | 1  | <b>08</b> |
|                                                                                                                                                                                                              | b) | Figure 1b shows the section of an angle purlin. A bending moment of 3000Nm is applied to the purlin in a plane at an angle of $30^\circ$ to the vertical y axis. If the sense of the bending moment is such that its components $M_x$ and $M_y$ both produce tension in the positive $xy$ quadrant, calculate the maximum direct stress in the purlin stating clearly the point at which it acts. | 1  | 2  | <b>12</b> |
| <p><b>Important Note:</b> Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.</p> |    |                                                                                                                                                                                                                                                                                                                                                                                                   |    |    |           |
|                                                                                                                                                                                                              |    |                                                                                                                                                                                                                                                                                                                                                                                                   |    |    |           |

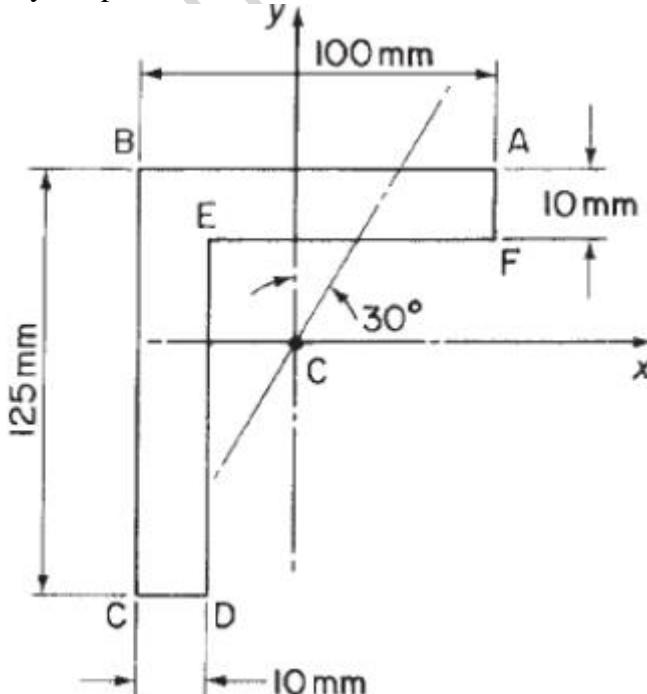
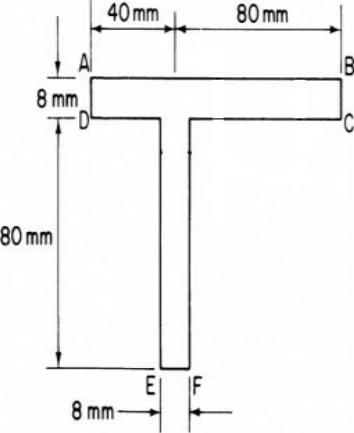




Figure 1b

**OR**

|                   |    |                                                                                                                                                                                                                                                                                                     |   |   |           |
|-------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----------|
| 2                 | a) | <p>Explain the following</p> <p>a) Anticlastic bending<br/> b) Product of second moment of area.<br/> c) Semi-monocoque<br/> d) Shear stress<br/> e) Shear flow<br/> f) Shear center</p>                                                                                                            | 1 | 1 | <b>6</b>  |
|                   | b) | <p>A beam having the cross-section shown in figure 2b is subjected to a bending moment of 1,500 Nm in a vertical plane. Calculate the maximum direct stress due to bending stating the point at which it acts</p>  | 1 | 2 | <b>14</b> |
| <b>UNIT - II</b>  |    |                                                                                                                                                                                                                                                                                                     |   |   |           |
| 3                 | a) | Derive the equation of shear flow for the open thin walled section.                                                                                                                                                                                                                                 | 2 | 2 | <b>10</b> |
|                   | b) | Determine the shear flow distribution in the thin-walled Z-section shown in Figure 3b due to a shear load $S_y$ applied through the shear centre of the section.                                                                                                                                    | 2 | 2 | <b>10</b> |
| <b>UNIT - III</b> |    |                                                                                                                                                                                                                                                                                                     |   |   |           |
| 4                 | a) | Explain briefly about Bredt Batho theory.                                                                                                                                                                                                                                                           | 3 | 2 | <b>8</b>  |
|                   | b) | Find the shear flow and twist per unit length of two tube structure as shown in Figure 4b ,Take $G = 25 \times 10^5 \text{ N/cm}^2$ and thickness $t = 0.1 \text{ mm}$ .                                                                                                                            | 3 | 2 | <b>12</b> |

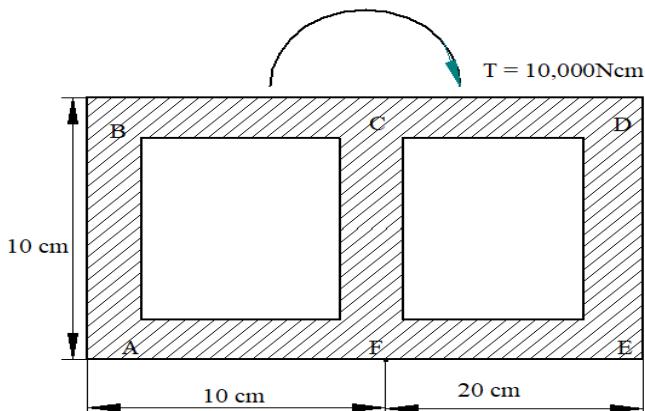



Figure 4b

**UNIT - IV**

- 5 a) A thin rectangular plate of side  $a$  and  $b$  (parallel to  $x$  &  $y$  -axis respectively) and thickness  $t$  is simply supported opposite edges and unload edges are free, and has a slight initial curvature giving an initial deflected shape.

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

If the plate is subjected to a uniform compressive stress  $\sigma$  in the  $x$ -direction, find an approximate expression for the magnitude of the stress  $\sigma$  which causes the plate to buckle.

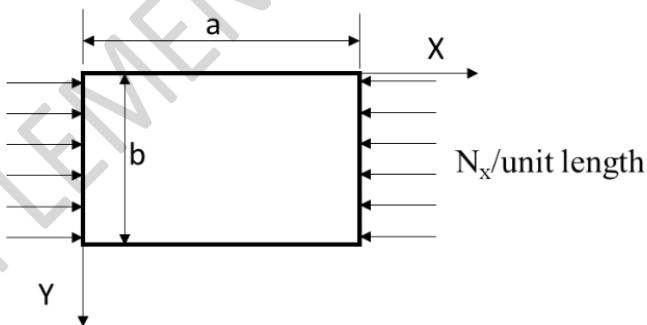



Figure 5a

- b) Calculate the crippling strength for the given formed section shown in the figure 5b using Needham's method. Assume  $E=75$  GPa and the yield stress is 280 MPa. Thickness of the section is 1.0 mm and Total Area =  $1.75 \text{ cm}^2$ .

4 2 **10**

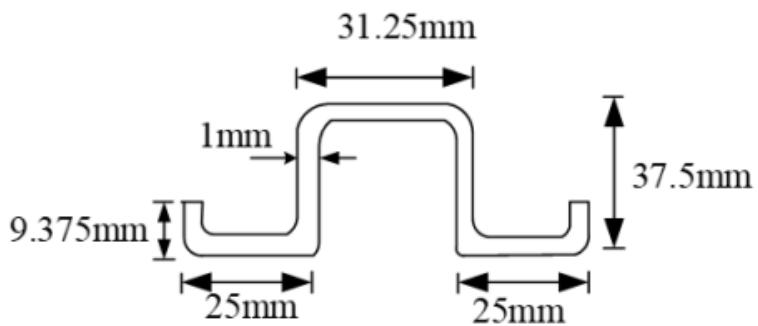



Figure 5b

**OR**

- 6 a) Derive an expression for the buckling load of plate subjected to a compressive load  $N_x$  on four side and the unloaded edges are free.

4 2 **15**

- b) Calculate the crippling stress for the given extrusion section shown in the figure 6b using the Gerard method. Assume  $E=75\text{GPa}$  and the yield stress is 280 Mpa. Thickness of the section is 1.5 mm.

4 2 **05**

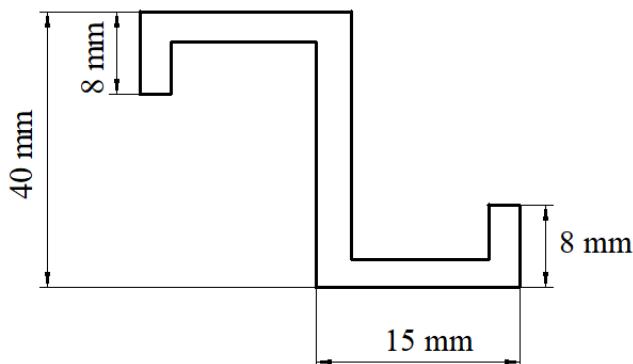



Figure 6b

**UNIT - V**

- 7 a) The fuselage section shown in figure 7a is subjected to a bending moment of 100 kNm applied in the vertical plane of symmetry, if the section is idealized determine the direct stress in each point.

5 2 **10**

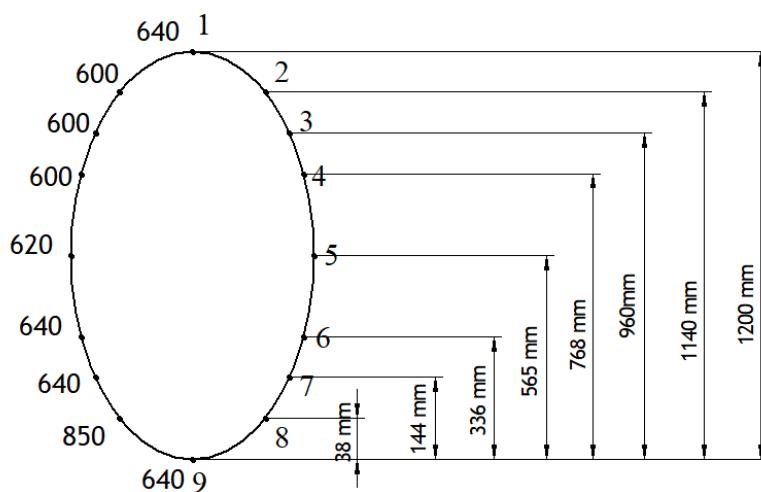



Figure 7a

- b) The wing section shown in Fig 7b. has been idealized such that the booms carry all the direct stresses. If the wing section is subjected to a bending moment of 300 kNm applied in a vertical plane, calculate the direct stresses in the booms.  $B1=B6=2580 \text{ mm}^2$ ,  $B2=B5=3880 \text{ mm}^2$ ,  $B3=B4=3230 \text{ mm}^2$

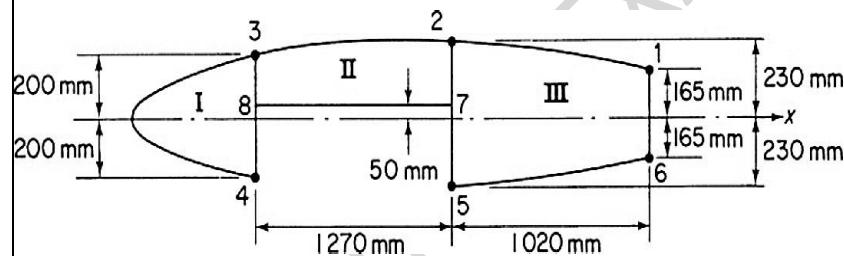



Figure 7b

\*\*\*\*\*