

B.M.S. College of Engineering, Bengaluru-560019

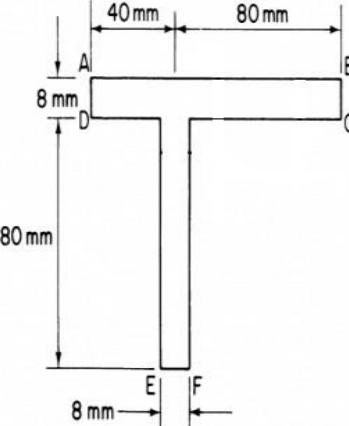
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering


Duration: 3 hrs.

Course Code: 23AS6PCAST/22AS6PCAST/20AE6DCAST

Max Marks: 100

Course: AEROSPACE STRUCTURES

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	<p>A beam having the cross-section shown in figure 1a is subjected to a bending moment of 1,500 Nm in a vertical plane. Calculate the maximum direct stress due to bending stating the point at which it acts.</p>	<i>CO1</i>	<i>PO2</i>	14
	b)	<p>Explain the following</p> <ul style="list-style-type: none"> a) Anticlastic bending b) Product of second moment of area. c) Semi-monocoque d) Shear stress e) Shear flow f) Shear center 	<i>CO1</i>	<i>PO1</i>	06
OR					
2	a)	<p>Figure 2a shows the section of an angle purlin. A bending moment of 3000Nm is applied to the purlin in a plane at an angle of 30° to the vertical y axis. If the sense of the bending moment is such that its components M_x and M_y both produce tension in the positive xy quadrant, calculate the maximum direct stress in the purlin stating clearly the point at which it acts.</p>	<i>CO1</i>	<i>PO1, PO2</i>	10

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

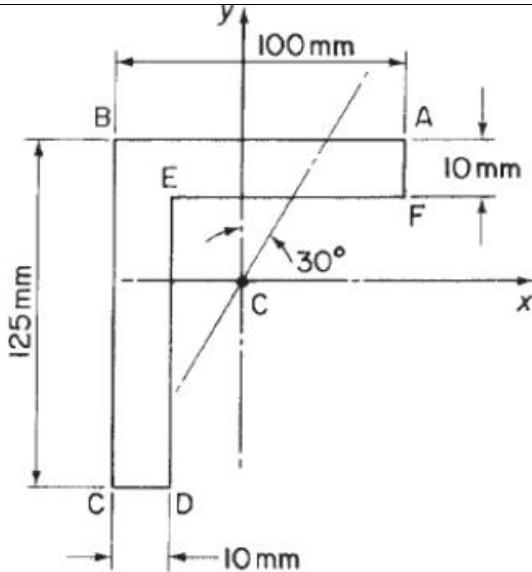


Figure 2a

b) Derive the bending stress equation for unsymmetrical bending using K method.

UNIT - II

3 a) Derive the equation of shear flow for the open thin-walled section.

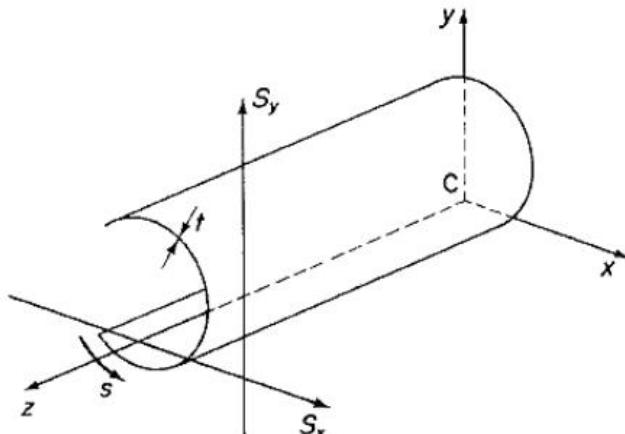


Figure 3a

b) Determine the position of shear center for channel section having dimensions 120 mm x 110mm and 10 mm thickness, under 10 kN of applied force.

OR

4 a) Determine the shear flow distribution in the thin-walled Z-section shown in Figure 4a due to a shear load S_y applied through the shear centre of the section.

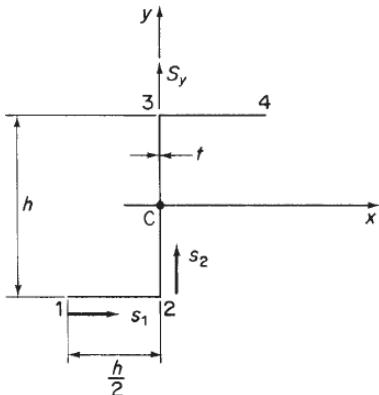


Figure 4a

b) Formulate the general shear centre equation for channel section having dimensions b, t_1, t_2, h subjected to vertical force F applied at a distance e from the centre.

UNIT - III

5 a) Find the shear flow and twist per unit length of two tube structure as shown in Figure 5a ,Take $G = 25 \times 10^5 \text{ N/cm}^2$ and thickness $t = 0.1 \text{ mm}$

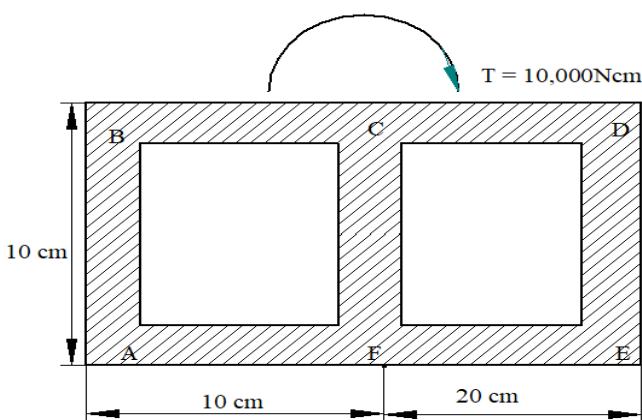


Figure 5a

b) Explain briefly about Bredt Batho theory.

OR

6 Derive the equation of shear flow for the rectangular closed thin-walled section.

UNIT - IV

7 a) A thin rectangular plate of side a and b (parallel to x & y -axis respectively) and thickness t is simply supported opposite edges and unload edges are free, and has a slight initial curvature giving an initial deflected shape.

CO2 PO2 **10**

CO2 PO2 **12**

CO3 PO1,
PO2 **08**

CO3 PO1,
PO2 **20**

CO3 PO2 **10**

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

If the plate is subjected to a uniform compressive stress σ in the x-direction, find an approximate expression for the magnitude of the stress σ which causes the plate to buckle.

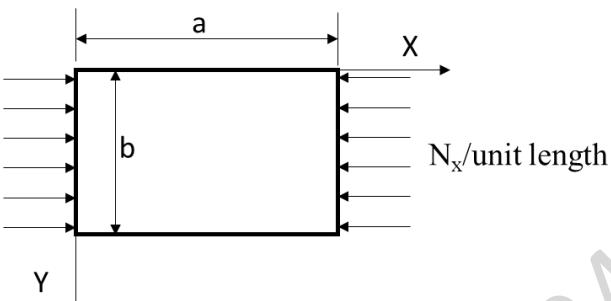
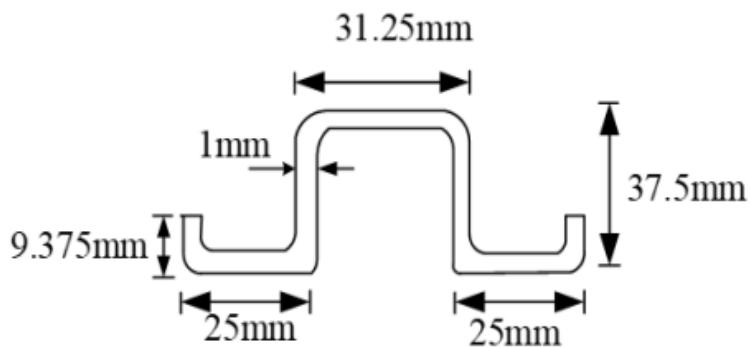
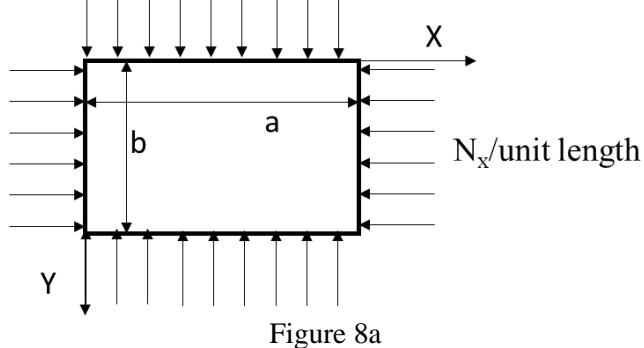


Figure 7a

b) Calculate the crippling strength for the given formed section shown in the figure 6a using Needham's method. Assume $E=75$ GPa and the yield stress is 280 MPa. Thickness of the section is 1.0 mm and Total Area= 1.75cm^2 .




Figure 7b

OR

8 a) A thin rectangular plate of side a and b (parallel to x & y -axis respectively) and thickness t is simply supported opposite edges and unload edges are free, and has a slight initial curvature giving an initial deflected shape.

$$w = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{mn} \sin \frac{m\pi x}{a} \sin \frac{n\pi y}{b}$$

If the plate is subjected to a uniform compressive stress σ in the x and y -direction, find an approximate expression for the magnitude of the stress σ which causes the plate to buckle.

b) Calculate the crippling stress for the given extrusion section shown in the figure 8b using the Gerard method. Assume $E=75$ GPa and the yield stress is 280 MPa. Thickness of the section is 1.5 mm.

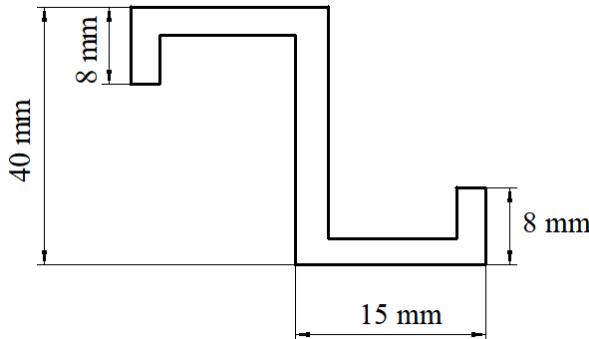


Figure 8b

UNIT - V

9 a) The fuselage of a light passenger carrying aircraft has the circular cross-section shown in Fig 9a. below. The cross-sectional area of each stringer is 100mm^2 and the vertical distances given in Figure below are to the mid-line of the section wall at the corresponding stringer position. If the fuselage is subjected to a bending moment of 200 kNm applied in the vertical plane of symmetry, at this section, calculate the direct stress distribution.

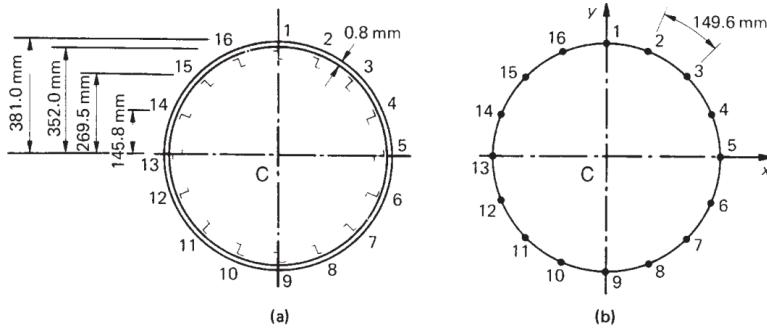


Figure 9a

CO3 **PO2** **05**

CO5 **PO2** **12**

	b)	<p>The wing section shown in Fig 9b. has been idealized such that the booms carry all the direct stresses. If the wing section is subjected to a bending moment of 300 kNm applied in a vertical plane, calculate the direct stresses in the booms.</p> <p>$B1=B6=2580 \text{ mm}^2$, $B2=B5=3880 \text{ mm}^2$, $B3=B4=3230 \text{ mm}^2$</p>	CO5	PO2	08
	10	<p>The thin-walled single cell beam shown in Fig 10. has been idealized into a combination of direct stress carrying booms and shear stress only carrying walls. If the section supports a vertical shear load of 10 kN acting in a vertical plane through booms 3 and 6, calculate the distribution of shear flow around the section.</p> <p>Boom areas: $B1=B8=200\text{mm}^2$, $B2=B7=250\text{mm}^2$, $B3=B6=400\text{mm}^2$, $B4=B5=100\text{mm}^2$.</p>	CO4	PO2	20
