

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 22AS6PCCOM

Max Marks: 100

Course: Combustion

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Combustion table is permitted to use.

			UNIT - I		CO	PO	Marks		
			1	a)					
			Compute adiabatic flame temperature for Hydrogen combustion with i) air and ii) oxygen. Compare the results.			CO2	PO2	10	
			b) Why do we need to study combustion?			CO1	PO1	4	
			c) Define mole fraction and mass fraction. Write the relationship between them.			CO1	PO1	6	
			OR						
			2 a) In a propane fuelled truck, 3 % (by volume) oxygen is measured in the exhaust stream of the running engine. Assuming complete combustion without dissociation. Determine the air-fuel ratio (mass) supplied to the engine.			CO2	PO2	10	
			b) The gasoline (C_8H_{18}) is burnt with dry air. The volumetric analysis of products on dry basis is $CO_2 = 10.02\%$, $O_2 = 5.62\%$, $CO = 0.88\%$ and $N_2 = 83.48\%$. Determine i) A/F ratio ii) equivalence ratio and % stoichiometric air used.			CO2	PO2	10	
			UNIT - II						
			3 a) Derive an expression for species governing equation.			CO3	PO3	10	
			b) For the given reaction below find the net rate of production of H_2 , X_2 , H , HX and X .			CO3	PO2	10	
			$X_2 + M \xrightarrow{k_{1,f}} X + X + M \quad \text{Chain initiation}$ $X + H_2 \xrightarrow{k_{2,f}} HX + H \quad \text{Chain carrying}$ $H + X_2 \xrightarrow{k_{3,f}} HX + X \quad \text{Chain carrying}$ $X + X + M \xrightarrow{k_{1,b}} X_2 + M \quad \text{Chain termination}$ $H + HX \xrightarrow{k_{2,b}} X + H_2 \quad \text{Chain carrying.}$						

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR					
4	a)	Explain Partial equilibrium approximation in chemical kinetics with suitable example.	CO3	PO2	10
	b)	Derive an expression for reaction rate of NO atom using the famous Zeldovich mechanism during the formation of nitric oxide.	CO3	PO2	10
UNIT - III					
5	a)	A premixed methane-air flame is stabilized on a burner of diameter 8 mm. The methane flow rate is 0.72 lpm and the equivalence ratio of the mixture is 0.9. If the flame height is measured to be 3 cm, find the flame speed of the mixture.	CO2	PO2	5
	b)	What is the difference between the deflagration and detonation? In weak deflagration problems pressure variations can be neglected, while in strong detonation or weak detonations pressure variations need to be taken into account. Can you explain why this is so based on the Rankine-Hugoniont curves? Use necessary sketches.	CO3	PO3	10
	c)	What are the various flame measuring techniques?	CO3	PO1	5
OR					
6	a)	Calculate the q for a gaseous stoichiometric mixture of CO and O ₂ . Assume the only products is CO ₂ . Calculate the detonation pressure if the initial state is at $P_1 = 1$ bar, $\rho_1 = 1$ kg/m ³ , and the final state is $\rho_2 = 3$ kg/m ³ . Assume $\gamma = 1.4$. Also calculate the C.J detonation speed.	CO2	PO2	8
	b)	The burning velocity of a combustible mixture was determined by employing the nozzle Burner-total area method. The data recorded were as volumetric flow rate of the combustible Mixture = 220 cm ³ , height of the mean cone of the flame = 3.83 cm, diameter of the nozzle-burner port = 8.3 mm. Calculate the value of the burning velocity.	CO2	PO2	7
	c)	Explain the structure of laminar premixed flame highlighting the different zones.	CO3	PO1	5
UNIT - IV					
7	a)	Compare Premixed flame and diffusion flame. Use necessary sketches.	CO1	PO1	6
	b)	Derive an expression for determining the height of the flame for a laminar jet diffusion flame using phenomenological analysis. Use necessary sketches.	CO3	PO3	8
	c)	Calculate the height of the flame using roper's correlation for butane gas. Take C.V of gas as 45MJ/kg, Tad = 2300 K, if the volumetric flow rate is 3.7×10^{-5} m ³ /s. Use Roper's correlation.	CO2	PO2	6
OR					

	8	a)	Explain the physical description of jet flame with a neat sketch.	CO3	PO3	6
		b)	Write a description on Candle flame, highlighting different zones and its temperature variation inside the flame.	CO3	PO3	6
		c)	Derive an expression for quenching diameter and highlight its significance.	CO3	PO3	8
UNIT - V						
	9	a)	Explain the various NOx reduction techniques employed in combustion technology.	CO1	PO7	12
		b)	Explain the mechanism of soot formation. Use necessary sketches.	CO1	PO1	8
			OR			
	10	a)	How does emissions from the combustion system affect human health?	CO1	PO1	5
		b)	Calculate the CO ₂ emissions for the fuels below and which one among them is better in terms of CO ₂ emissions. Take wood as C H _{1.4} O _{0.06} , LPG (80% butane and 20 % Propane) and Petrol, assuming stoichiometric combustion with air.	CO1	PO7	7
		c)	What are the various NOx formation mechanism in combustion?	CO1	PO7	8
