

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 22AS6PCCOM

Max Marks: 100

Course: Combustion

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Combustion table is permitted to use.

UNIT - I			CO	PO	Marks
1	a)	Define the following i) Mass fraction ii) Mole fraction iii) Equivalence ratio iv) Standardized enthalpy	CO1	PO1	8
	b)	Consider a mixture of N ₂ and Ar in which there are three times as many moles of N ₂ as there are moles of Ar. Determine the mole fractions of N ₂ and Ar, the molecular weight of the mixture, the mass fractions of N ₂ and Ar and the molar concentration of N ₂ in kmol/m ³ for a temperature of 500 K and a pressure of 250 kPa. (MW of N ₂ = 28 and Ar = 40)	CO2	PO1 PO2	8
	c)	Determine the stoichiometric air-fuel ratio (mass) for propane.	CO1	PO1	4
OR					
2	a)	Why do you need to study combustion?	CO1	PO1	4
	b)	Find the equilibrium constant at 2000 K for the reaction shown below, $CO_2 \rightarrow CO + 1/2O_2$	CO2	PO2	8
	c)	Estimate the constant-volume adiabatic flame temperature for a stoichiometric Methane-air mixture. Initial conditions are T _i = 298 K, P = 1 atm. Enthalpy of formation of methane = -74831 kJ/kmol. Take Cp (kJ/kmol-K) @ 1200 K for CO ₂ , H ₂ O, N ₂ as 56.21, 43.87 and 33.71 respectively.	CO2	PO2	8
UNIT - II					
3	a)	For the given reaction below find the net rate of production of N ₂ , O ₂ , NO, O, N, having k ₁ , k ₂ , k _{3f} and k _{3b} as the rate constant for the reactions respectively. $N_2 + O \rightarrow NO + N$ $N + O_2 \rightarrow NO + O$ $O_2 \leftrightarrow 2O$	CO3	PO2	7

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	b)	Explain the partial equilibrium approximation employed in chemical kinetics.	CO3	PO1	7
	c)	Bring out the commonalities among three transport laws, explaining each one with fundamental equation and write the generalized equation.	CO1	PO1	6
UNIT - III					
4	a)	Derive an expression for Rankine-Hugoniont relations. Highlight the Hugoniont curves with various regimes.	CO3	PO3	8
	b)	A kitchen room of size 4m x 3m x 3m at 0.1 Mpa and 298 K is filled with propane due to leakage from propane gas cylinder of volume 0.1 m ³ initially at 0.5 Mpa. Assuming that the leakage stops when the pressure in the cylinder reaches 0.1 Mpa, Determine whether the mixture in the kitchen is flammable or not?	CO3	PO3	7
	c)	Explain the steady laminar premixed flame structure highlighting the different zones.	CO3	PO1	5
OR					
5	a)	Determine the laminar burning velocity S_L of stoichiometric methane air mixture a conical flame of flame height of 5.1 cm is established using a Bunsen burner with port diameter of 10 mm. If it consumes 19 LPM of fuel-air mixture, determine its burning velocity by area method.	CO2	PO2	7
	b)	What do you mean by quenching diameter? Derive an expression for quenching diameter. State the significance of quenching dia in practical combustors.	CO3	PO3	8
	c)	In a stoichiometric propane air flame N_2 is replaced by He whose original burning velocity S_L is 40 cm/s. Estimate the laminar burning velocity of this new stoichiometric mixture.	CO3	PO1	5
UNIT - IV					
6	a)	A laminar butane gas jet issued from a tube into the air has a flame height of 10 cm. Determine the volumetric fuel flow rate and heat release rate. If the fuel tube diameter is increased by 25% and velocity is decreased by 25%, What will be the flame height? Take heat of combustion of butane gas = 45000 kJ/kg, $T_{ad} = 2300$ K	CO3	PO3	8
	b)	Compare Premixed flame and Diffusion flame. Use necessary sketches.	CO3	PO1	5
	c)	Using phenomenological analysis, derive the laminar jet diffusion flame height. Use necessary sketches.	CO3	PO1	7
UNIT - V					
7	a)	Explain the various NOx formation mechanisms in combustion systems.	CO3	PO1	8
	b)	A gas turbine engine uses propane gas. The measured compositions of exhaust gas at dry conditions are given below: $O_2 = 4.5\%$, $CO = 0.15\%$, $CO_2 = 14.5\%$, $NOx = 75$ ppm. Determine the emission index of NOx.	CO1	PO7	6
	c)	How do emissions from the combustion systems affect human health?	CO1	PO1	6
