

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 23AS6PCCOM/20AE6DCCOM/22AS6PCCOM

Max Marks: 100

Course: Combustion

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
 2. Missing data, if any, may be suitably assumed.
 3. Use of Combustion data handbook is permitted to use.

UNIT - I			CO	PO	Marks																		
1	a)	Define stoichiometry. Discuss in detail about combustion stoichiometry with an example. How it is related with the equivalence ratio?	CO1	PO1	08																		
	b)	A small, low-emission, stationary gas turbine engine operates at full load (3950 kW) at an equivalence ratio of 0.286 with an air flow rate of 15.9 kg/s. The equivalent composition of the fuel (natural gas) is C _{1.16} H _{4.32} . Determine the fuel mass flow rate and the operating air-fuel ratio for the engine.	CO2	PO2	08																		
	c)	Why is the equivalence ratio frequently more meaningful than the air-fuel (or fuel-air) ratio when comparing different fuels?	CO1	PO1	04																		
OR																							
2	a)	Derive an expression for equilibrium constant K _p using Gibb's function.	CO2	PO1	08																		
	b)	Estimate the constant-pressure adiabatic flame temperature for the combustion of a stoichiometric CH ₄ -air mixture. The pressure is 1 atm and the initial reactant temperature is 298 K. Use the following assumptions: i) Complete combustion (no dissociation), i.e., the product mixture consists of only CO ₂ , H ₂ O, and N ₂ . ii) The product mixture enthalpy is estimated using constant specific heats evaluated at 1200 K (=0.5(T _i + T _{ad}) where T _{ad} is guessed to be about 2100 K).	CO2	PO2	08																		
<table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; width: 25%;">Species</th> <th style="text-align: center; width: 35%;">Enthalpy of Formation @ 298 K $\bar{h}_{f,i}^o$ (kJ/kmol)</th> <th style="text-align: center; width: 40%;">Specific Heat @ 1200 K $\bar{c}_{p,i}$ (kJ/kmol-K)</th> </tr> </thead> <tbody> <tr> <td>CH₄</td> <td style="text-align: center;">-74,831</td> <td style="text-align: center;">—</td> </tr> <tr> <td>CO₂</td> <td style="text-align: center;">-393,546</td> <td style="text-align: center;">56.21</td> </tr> <tr> <td>H₂O</td> <td style="text-align: center;">-241,845</td> <td style="text-align: center;">43.87</td> </tr> <tr> <td>N₂</td> <td style="text-align: center;">0</td> <td style="text-align: center;">33.71</td> </tr> <tr> <td>O₂</td> <td style="text-align: center;">0</td> <td style="text-align: center;">—</td> </tr> </tbody> </table>						Species	Enthalpy of Formation @ 298 K $\bar{h}_{f,i}^o$ (kJ/kmol)	Specific Heat @ 1200 K $\bar{c}_{p,i}$ (kJ/kmol-K)	CH ₄	-74,831	—	CO ₂	-393,546	56.21	H ₂ O	-241,845	43.87	N ₂	0	33.71	O ₂	0	—
Species	Enthalpy of Formation @ 298 K $\bar{h}_{f,i}^o$ (kJ/kmol)	Specific Heat @ 1200 K $\bar{c}_{p,i}$ (kJ/kmol-K)																					
CH ₄	-74,831	—																					
CO ₂	-393,546	56.21																					
H ₂ O	-241,845	43.87																					
N ₂	0	33.71																					
O ₂	0	—																					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	c)	Analyze the various parameters influencing the equivalence ratio.	CO1	PO1	04
		UNIT - II			
3	a)	Write a short note on various steps involved in elementary reactions.	CO3	PO1	08
	b)	What is partial-equilibrium approximation in chemical kinetics? Explain it with a suitable example.	CO3	PO1	12
		OR			
4	a)	Derive an expression for species conservation equation.	CO3	PO1	12
	b)	Consider a non-premixed jet flame in which the fuel is C_3H_8 and the oxidizer is an equimolar mixture of O_2 and CO_2 . The species existing within the flame are C, CO, CO_2 , O_2 , H_2 , H_2O , and OH. Determine the numerical value of the stoichiometric mixture fraction f_{stoic} for this system.	CO2	PO1	08
		UNIT - III			
5	a)	List the various methods used in the measurement of flame speed. Explain them with neat sketches.	CO3	PO1	10
	b)	Derive an expression for the Quenching distance. Highlight its physical significance.	CO3	PO3	10
		OR			
6	a)	Illustrate the structure of a laminar premixed flame and explain in detail about the various zones of the flame.	CO3	PO1	10
	b)	A gaseous combustible mixture is contained in a long cylindrical glass tube open at one end and closed at the other end. The internal diameter of the tube is 5.5 cm. The speed of the uniform movement of the flame front was determined to be 84 cm/s by igniting the combustible mixture at the open end. Assume flame to be hemispherical. Calculate the burning velocity of the mixture.	CO2	PO2	10
		UNIT - IV			
7	a)	Draw the laminar diffusion flame structure of jet flame and give the physical description. List out the various assumptions made.	CO3	PO1	10
	b)	Investigate about the soot formation and destruction zones in laminar jet diffusion flame.	CO3	PO1	10
		OR			
8	a)	Infer about lift-off velocity, lift-off height and blow-out velocity.	CO3	PO1	10
	b)	Derive the expression for droplet burning time using D^2 law.	CO3	PO1	10

UNIT - V					
	9	a)	Discuss about the various factors affecting the combustion efficiency of a combustion device.	CO1	PO1
		b)	Assess the health hazards associated with combustion emissions.	CO1	PO7
		c)	Analyze about the NO _x formation mechanism and the methods to control NO _x formation.	CO1	PO7
OR					
	10	a)	Infer about the emission reduction technique commonly used in gas turbine combustors.	CO1	PO1
		b)	Outline about some of the environmental consequences of combustion products.	CO1	PO7
		c)	Analyze about the various parameters influence pollutant formation during combustion.	CO1	PO7

B.M.S.C.E. - EVEN SEM 2024-25