

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 22AS6PCFLD

Max Marks: 100

Course: Flight Dynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Derive the three-moment equations of motion (with necessary assumptions) in the Body-Axis system of an aircraft, starting from the angular momentum equation $\vec{H} = I \vec{\omega}$, where I is the Inertia tensor and ω is the angular velocity.	CO1	PO 2	10
	b)	Given the following vectors, find the inertial acceleration in the body axis system. $\vec{a}_t = \dot{\vec{V}}_B + \vec{\omega} \times \vec{V}_B$ $\dot{\vec{V}}_B = \begin{Bmatrix} 3 \\ 0 \\ 0 \end{Bmatrix} m/s^2, \vec{\omega} = \begin{Bmatrix} 0 \\ 0 \\ 0.3 \end{Bmatrix} rad/s, \vec{V}_B = \begin{Bmatrix} 0 \\ 0 \\ 3 \end{Bmatrix} m/s$	CO1	PO2	04
	c)	Draw the vector diagram for the stability axis system of an aircraft and convert it into a body axis system in terms of the aerodynamic forces.	CO1	PO2	06
UNIT - II					
2		Linearize the kinematic equations below. (i) $P = -\sin \theta \dot{\Psi} + \dot{\phi}$ (ii) $Q = \sin \Phi \cos \theta \dot{\Psi} + \cos \Phi \dot{\theta}$	CO2	PO2	20
OR					
3		Derive the expression for stability derivatives due to the change in the forward speed.	CO2	PO1	20
UNIT - III					
4	a)	Illustrate the influence of yaw rate on velocity distribution on the wing and tail with a neat sketch.	CO3	PO1	16
	b)	Derive the expression for stability derivatives due to the yawing rate.	CO3	PO1	04

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

UNIT - IV					
5	a)	<p>The α/δ_e transfer function for a T-37 cruising at 9,000 m and 0.46 Mach is given below by the equation. Find the natural frequency, damping ratio, damped frequency, and time constant for the short period and phugoid modes.</p> $\frac{\alpha}{\delta_e} = \frac{(S + 336.1)(s^2 + 0.0105s + 0.0097)}{s^4 + 4.5898s^3 + 21.6536s^2 + 0.2204s + 0.1879}$	CO3	PO2	10
	b)	<p>Consider a Lear Jet flying at 0.7 Mach and 12,192 m. The 3-DOF longitudinal transfer functions are approximated, and the characteristic equation is given by</p> $675.9s^4 + 1371s^3 + 5459s^2 + 86.31s + 44.78 = 0$ <p>Find the (a) natural frequency, (b) damping ratio, (c) damping frequency, (d) time constant, and (e) period of oscillation for the short period and Phugoid modes.</p>	CO3	PO2	10
OR					
6	a)	<p>Find the natural frequency and the damping ratio based on two degrees of freedom for the Phugoid mode approximation is given by the standard equation given below</p> $\begin{bmatrix} (s - X_u - X_{T_u}) & -X_\alpha & g \cos \theta_1 \\ -Z_u & s(U - Z_{\dot{\alpha}}) - Z_\alpha & [-(Z_q + U_1)s + g \sin \theta_1] \\ -(M_u + M_{T_u}) & -(M_{\dot{\alpha}}s + M_\alpha + M_{T_\alpha}) & (s^2 - M_q s) \end{bmatrix} \begin{bmatrix} \frac{U(s)}{\delta_e s} \\ \frac{\alpha(s)}{\delta_e s} \\ \frac{\theta(s)}{\delta_e s} \end{bmatrix} = \begin{bmatrix} X_{\delta_e} \\ Z_{\delta_e} \\ M_{\delta_e} \end{bmatrix}$	CO3	PO2	15
	b)	Explain briefly dynamic stability.	CO3	PO1	05
UNIT - V					
7	a)	Explain briefly Dutch roll mode.	CO3	PO1	05
	b)	Explain autorotation and spin with necessary equations.	CO3	PO1	15
