

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 23AS6PCFLD / 22AS6PCFLD

Max Marks: 100

Course: Flight Dynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive the three moment equations of motion (with necessary assumptions) in the Body-Axis system of an aircraft, starting from the angular momentum equation $\vec{H} = I \vec{\omega}$, where I is the Inertia tensor and ω is the angular velocity.	CO1	PO1	10
		b)	Derive the kinematic equations of motion.	CO1	PO1	10
OR						
	2	a)	Consider the T-37 at the following Euler angles: Yaw angle $\Psi = +90^\circ$, Pitch angle $\Theta = +10^\circ$ and Roll angle $\Phi = +10^\circ$ Describe the aircraft attitude and transform the weight force through these angles to the body axis system. The gross weight is 30 kN.	CO1	PO2	05
		b)	Describe the Earth axis system.	CO1	PO1	05
		c)	Draw the vector diagram for the stability axis system of an aircraft and convert it into the body axis system in terms of the aerodynamic forces.	CO1	PO1	10
			UNIT - II			
	3	a)	Show that the derivative due to the changes in the forward speed in the x-direction with respect to u/U_1 is dependent on the speed damping derivative and the coefficient of aerodynamic drag under steady state condition by deriving a relation.	CO2	PO1	10
		b)	Find the u/U_1 derivative for the F-4C aircraft at 10,500 m and Mach 0.9 ($U_1 = 267$ m/s, $q = 13,560$ N/m ² , $S = 50$ m ²) if $C_{D_1} = 0.03$ and $C_{D_u} = 0.027$. If U is perturbed to 268 m/s, find the perturbed applied aero force along the x stability axis (f_{A_x}).	CO2	PO2	05
		c)	Show that the derivative due to the changes in the forward speed is dependent on the Mach-Tuck derivative and the coefficient of moment under steady state condition by deriving a relation.	CO2	PO1	05

		OR			
4	a)	Linearize and simplify based on the assumptions and the choice of body-fixed stability axis during the perturbed flight for the given aircraft's longitudinal equation of motion. $m(\dot{W} + PV - QU) = mg \cos \Phi \cos \Theta + F_{A_z} + F_{T_z}$	CO2	PO1	10
	b)	Assume a Lear Jet is cruising (level, unaccelerated flight) at 12,000 m (density of air = 0.310828 kg/m ³) with U ₁ = 207 m/s, S = 22 m ² , Weight = 57,827 N, and C _{Tx1} = 0.0335. Find C _{L1} , C _{D1} and the thrust.	CO2	PO2	10
		UNIT - III			
5		Derive the expression for stability derivatives due to the rolling rate.	CO3	PO1	20
		OR			
6	a)	Derive the expression for stability derivatives due to the yaw rate.	CO3	PO1	15
	b)	Illustrate the influence of yaw rate on velocity distribution on the wing and tail with a neat sketch.			05
		UNIT - IV			
7	a)	Find the natural frequency and the damping ratio based on the two degree of freedom Phugoid approximation given by the standard equation below.	CO3	PO1	10
		$\begin{bmatrix} s - X_u & X_\alpha & g \\ -Z_u & s(U - Z_\alpha) - Z_\alpha & -(Z_q + U_1)s \\ M_u & (M_\alpha s + M_\alpha) & s^2 - M_q s \end{bmatrix} \begin{bmatrix} \frac{U(s)}{\delta_e s} \\ \frac{\alpha(s)}{\delta_e s} \\ \frac{\theta(s)}{\delta_e s} \end{bmatrix} = \begin{bmatrix} X_{\delta_e} \\ Z_{\delta_e} \\ M_{\delta_e} \end{bmatrix}$			
	b)	Find the natural frequency (ω_n), the damping ratio (ζ) damped frequency (ω_d) from the characteristic equation given below: $s^2 + 0.0062s + 0.8979$	CO3	PO2	05
	c)	Split the polynomial equation into two characteristic equations of degree two and explain which one belongs to short-period and phugoid motion. $s^4 + 4.5898s^3 + 21.6536s^2 + 0.2204s + 0.1879$	CO3	PO2	05
		OR			
8	a)	Find the natural frequency of the phugoid as a slow interchange of kinetic energy and potential energy with the necessary assumptions from the Lanchester model.	CO3	PO1	10
	b)	The following is the longitudinal characteristic equation for an F-89 Scorpion flying at 6,096 m at Mach 0.638. Determine the short period and phugoid natural frequencies, as well as the damping ratios and damped frequencies for both modes: $(s^2 + 4.2102s + 18.2329)(s^2 + 0.00899s + 0.003969) = 0$	CO3	PO2	10

UNIT - V					
	9	a)	Explain autorotation with the necessary combined coefficient of lift (C_L) and coefficient of drag (C_D) versus the angle of attack (α).	<i>CO3</i>	<i>PO1</i> 14
		b)	Explain spin and derive the radius for the same.	<i>CO3</i>	<i>PO1</i> 06
OR					
	10	a)	Explain Dutch roll.	<i>CO3</i>	<i>PO1</i> 10
		b)	Explain spiral instability.	<i>CO3</i>	<i>PO1</i> 10

B.M.S.C.E. - EVEN SEM 2024-25