

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 23AS6PEHAD

Max Marks: 100

Course: Hypersonic Aerothermodynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Derive the one-dimensional continuity equation for inviscid, steady flow with no body force.	CO1	PO2	10
		b)	Derive the relation between total pressure and static pressure in isentropic flow.	CO1	PO2	10
OR						
	2	a)	(i) Define compressible flow. Show that the total temperature is constant across the stationary normal shock wave. (ii) Discuss with a neat sketch the different flow regimes behind the bow shock.	CO1	PO2	10
		b)	Derive the one-dimensional momentum equation for inviscid, steady flow with no body force.	CO1	PO2	10
			UNIT - II			
	3	a)	Define hypersonic flow. Demonstrate five major characteristics of hypersonic flow.	CO1	PO1	10
		b)	Consider a flat plate exposed to hypersonic flow at some angle of attack. According to the Newtonian theory, calculate the aerodynamic forces and lift to drag ratio.	CO1	PO2	10
OR						
	4	a)	(i) Demonstrate "Modified Newtonian Law" as a local surface inclination method in order to find out the coefficient of pressure over a hypersonic body locally. (ii) Under which condition, the "Modified Newtonian Law" will be reduced to the "Straight Newtonian Law" of local surface inclination. (iii) Why does the method accurately predict the surface pressure near the stagnation point or near the nose of a hypersonic blunt body?	CO1	PO2	15

	b)	At very high Mach numbers, show that the coefficient of pressure, $C_p = \left(\frac{4}{\gamma+1} \right) \sin^2 \beta$. β is the shock angle, and γ is the ratio of specific heats.	CO1	PO2	05
		UNIT - III			
5		Derive hypersonic small-disturbance equations. With the help of hypersonic small disturbance equations, show that the hypersonic flow is inherently nonlinear.	CO1	PO2	20
		OR			
6	a)	Derive the Hypersonic Boundary Layer Equations from the Navier-Stokes Equations (particularly continuity and momentum equations). Write down the assumptions that you need to consider in deriving the Hypersonic Boundary layer equations.	CO1	PO2	15
	b)	How are the Hypersonic Boundary layer equations different from the Supersonic/Subsonic Boundary layer equations?	CO1	PO2	05
		UNIT - IV			
7	a)	(i) Write down the real gas equation. Under which conditions does a gas behave like a real gas? (ii) Describe the gas from the microscopic point of view.	CO2	PO1	10
	b)	With an appropriate diagram, discuss the velocity-altitude map for reentry vehicles.	CO2	PO1	10
		OR			
8	a)	(i) Discuss the nature of high-temperature flows. (ii) Demonstrate with an appropriate sketch the undesirable effect of atmospheric entry of reentry vehicles.	CO2	PO1	10
	b)	Describe the procedure for calculating the equilibrium composition of a chemically reacting gas.	CO2	PO1	10
		UNIT - V			
9	a)	Write down the working principle of the Hypersonic Wind Tunnel and Hypersonic Shock Tunnel. State the advantages and disadvantages associated with the Hypersonic Wind Tunnel and Hypersonic Shock Tunnel.	CO3	PO1	10
	b)	Demonstrate Shock and Boundary Layer Interactions with the appropriate sketch. How the Shock and Boundary Layer Interactions inside the Hypersonic intake influence the flow phenomena.	CO3	PO1	10
		OR			
10	a)	Demonstrate the working principle of Schlieren flow and Shadowgraph flow visualizations.	CO3	PO1	14
	b)	Describe the working principle of Piezo-electric and Piezo-resistive devices.	CO3	PO1	06
