

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

October 2024 Supplementary Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 22AS6PCICT

Max Marks: 100

Course: INTRODUCTION TO CONTROL THEORY

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I	CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Give the brief review of historical developments of control theories and practices.	CO1	PO1	06
		b)	Describe the working principle of rocket autopilot system with suitable sketches.	CO1	PO1	06
		c)	Explain the functions that automatic control systems provide for flight control.	CO2	PO3	08
OR						
	2	a)	Mention different types of controllers. Explain any two of them in detail.	CO1	PO1	08
		b)	Define impulse response function of a system.	CO2	PO1	04
		c)	Explain the state model of linear system.	CO1	PO1	08
UNIT - II						
	3	a)	Explain the models of pneumatic systems along with its basic elements and neat sketches.	CO1	PO1	06
		b)	Derive the transfer function of first order liquid system.	CO3	PO1	04
		c)	For the mechanical system shown in figure 3c below i) Draw the mechanical network ii) Write the differential equation of the system iii) Draw the analogous electrical network based on F-V and F-I analogy	CO3	PO3	10

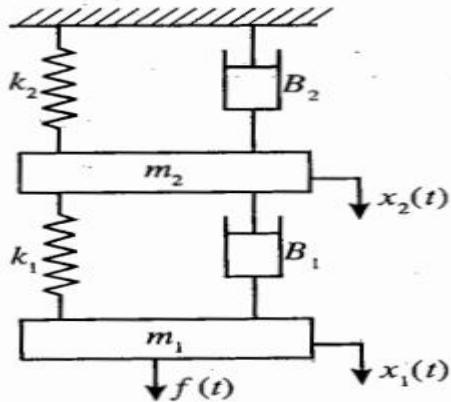


figure 3c

OR

4 a) For the Signal flow graph shown below figure 4a, determine the transfer function $\left(\frac{C(s)}{R(s)}\right)$ using Mason's formula.

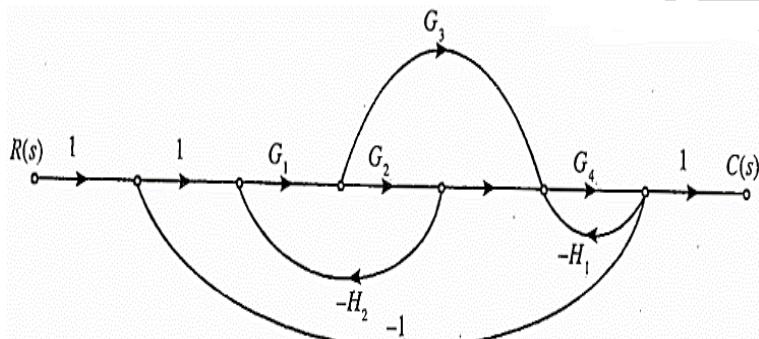


figure 4a

b) Reduce the block diagram shown in the figure 4b to its simplest possible form and find its closed loop transfer function.

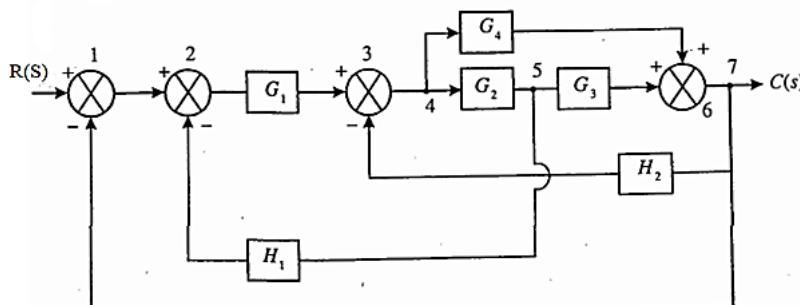


figure 4b

c) Derive the transfer function of a closed loop system.

UNIT - III

5 a) What are the different types of standard test inputs used in evaluating the performance of a system and also derive its Laplace transform representation with suitable plots.

b) Derive the transient response of first order and second order system for all standard inputs.

CO3 PO3 **08**

CO3 PO3 **08**

CO2 PO1 **04**

CO1 PO1 **10**

CO3 PO1 **10**

UNIT - IV					
6	a)	Sketch the polar plot of the system having transfer function $G(s)H(s) = \frac{10s}{(1+4s)}$	CO3	PO3	08
	b)	Sketch the root locus plots for $G(s)H(s) = \frac{K}{s(s+2)(s+4)(s+6)}$ For what values of K the system becomes unstable?	CO3	PO3	12
UNIT - V					
7	a)	What is the need for system compensation? Explain its types with a example for each.	CO1	PO1	06
	b)	Verify the following system are controllable and observable or not by using Kalman's test. $\begin{Bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{Bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} + \begin{Bmatrix} 0 \\ 1 \end{Bmatrix} u \text{ and } C = \begin{bmatrix} 1 & 1 \end{bmatrix}$	CO3	PO3	08
	c)	Give the matrix representation of state equations.	CO1	PO1	06
