

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

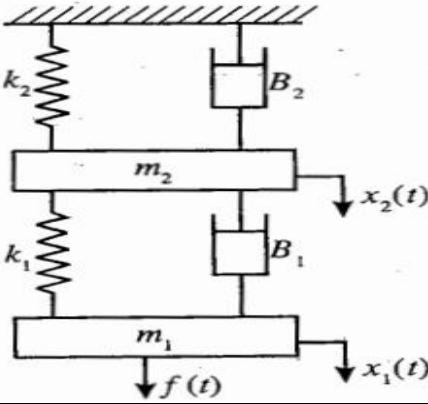
Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VI

Branch: Aerospace Engineering


Duration: 3 hrs.

Course Code: 23AS6PCICT / 22AS6PCICT

Max Marks: 100

Course: INTRODUCTION TO CONTROL THEORY

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Describe the working principle of missile launcher and guidance system with suitable sketches.	CO1	PO1	8
	b)	Mention different types of controllers. Explain any three of them in detail.	CO1	PO1	12
OR					
2	a)	Write a short note on the applications of controls in aerospace engineering.		CO1	PO1
	b)	Explain the concept of feedback control system with example and give the effects of feedback on the control system.		CO1	PO1
UNIT - II					
3	a)	For the mechanical system shown in figure below a. Draw the mechanical network b. Write the differential equation of the system c. Draw the analogous electrical network based on F-V and F-I analogy	CO3	PO3	12
	b)	Explain the models of pneumatic systems along with its basic elements and neat sketches.	CO1	PO1	8

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

OR

4 a) What do you mean by signal flow graph? Write down the terms used and procedure to draw signal flow graph.

CO1 *PO1* **8**

b) Reduce the block diagram shown in the figure to its simplest possible form and find its closed loop transfer function.

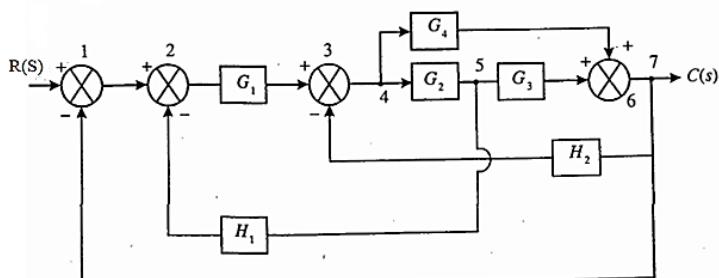


Fig:4b

UNIT - III

5 a) Derive the transient response of first order system for all standard inputs.

CO1 *PO1* **10**

b) Describe the effect of standard test input on steady state errors and error constants and also derive the steady-state errors of TYPE 0,1 and 2 unity feedback systems.

CO1 *PO1* **10**

OR

6 a) What are the different types of standard test inputs used in evaluating the performance of a system and also derive its Laplace transform representation with suitable plots.

CO1 *PO1* **12**

b) What do you mean by steady state error? Derive the expression for error constant and steady state error.

CO1 *PO1* **8**

UNIT - IV

7 a) What do you mean by stability of the system? Explain its concept by giving example and give the conditions for stability analysis (in the form of tabular column)

CO1 *PO1* **8**

b) Sketch the root locus plot for

$$G(s) = \frac{K}{s(s+1)(s+2)(s+3)}$$

For what values of K the system becomes unstable?

CO3 *PO3* **12**

OR

8 a) Sketch the polar plot of the system having transfer function

$$G(s)H(s) = \frac{10s}{(1+4s)}$$

CO3 *PO3* **8**

b) Sketch the root locus plots for

CO3 *PO3* **12**

			$G(s)H(s) = \frac{K}{s(s+2)(s+4)(s+6)}$ <p>For what values of K the system becomes unstable?</p>			
			UNIT - V			
9	a)		With the help of MIMO system, explain the nth order state-space system and derive the functional form of 'n' dimensional LTI system	CO1	PO1	8
	b)		Verify the following system are controllable and observable or not by using Kalman's test. $\begin{Bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{Bmatrix} = \begin{bmatrix} -5 & 4 \\ -6 & 5 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} + \begin{Bmatrix} 1 \\ 1 \end{Bmatrix} u \text{ and } C = \begin{bmatrix} -2 & 3 \end{bmatrix} x$	CO3	PO3	8
	c)		Explain Gilbert's test of controllability and observability.	CO1	PO1	4
			OR			
10	a)		Verify the following system are controllable and observable or not by using Kalman's test. $\begin{Bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{Bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{Bmatrix} x_1 \\ x_2 \end{Bmatrix} + \begin{Bmatrix} 0 \\ 1 \end{Bmatrix} u \text{ and } C = \begin{bmatrix} 1 & 1 \end{bmatrix}$	CO3	PO3	8
	b)		Give the matrix representation of state equations	CO1	PO1	6
	c)		What do you mean by series and parallel compensation system? Explain with the help of a suitable figure.	CO1	PO1	6
