

U.S.N.							
--------	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme : B.E.

Semester: VII

Branch : Aerospace Engineering

Duration: 3 hrs.

Course Code : 22AS7PCACD

Max Marks: 100

Course : Aircraft Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	What are the different stages in aircraft design? Explain the various studies and calculations carried out and performed in each stage.		CO1	PO 1,2	10
		b)	The empty mass fraction of an aircraft is 0.52, Fuel mass fraction is 0.35 and maximum take-off weight is 80900 kg. calculate the pay load in Kg if the crew mass is 517 Kg.		CO1	PO 1,2, 3	10
OR							
	2	a)	With the help of neat sketch, describe the design wheel in conceptualizing and modifying the aircraft design.		CO1	PO 1,2	10
		b)	Describe the steps for the aircraft gross weight estimation.		CO1	PO 1,2	10
			UNIT - II				
	3	a)	Explain the impact of airfoil geometry on aircraft performance.		CO2	PO 1,2	7
		b)	Describe the NACA 4 and 5 digit numbering system		CO2	PO 1,2	8
		c)	Illustrate the effect of Reynolds number on airfoil performance.		CO2	PO 1,2	5
OR							
	4	a)	Illustrate conventional tail and T-tail configuration and explain the characteristics of each one with merits and demerits.		CO2	PO 1,2	10
		b)	Compare merits and demerits between high wing and low wing configuration.		CO2	PO 1,2	10
			UNIT - III				
	5	a)	Define thrust to weight ratio and explain the selection process of wing loading for a passenger aircraft for every mission segments.		CO3	PO 1,2	15
		b)	Describe thrust matching.		CO3	PO 1,2	5

OR					
6	a)	<p>A propeller aircraft having the following design data $W = 50,000 \text{ N}$, $V_{TO} = 1.2 V_{stall}$, $\eta_p = 75\%$ Power = 2500 BHP/engine, No. of Engines: 02 $C_{Lmax} = 2.4$</p> <p>For 1000 meter takeoff distance, Take off Parameter = 120. Determine the wing loading required for take-off at sea-level in a standard atmosphere.</p>	CO3	PO 1,2,3	10
	b)	<p>(i) Explain the effect of wing loading on take-off performance. (ii) Describe the expression of wing loading based on stall velocity.</p>	CO3	PO 1,2	10
UNIT - IV					
7	a)	<p>An unmanned aerial vehicle (UAV) is being designed with the following specifications: Payload weight = 15 kg Maximum take-off weight (MTOW) = 35 kg Wing area (S) = 12 m² Wing span (b) = 8 m Fuselage length = 4 m Tail volume coefficient (V_T) = 0.12</p> <p>Determine the horizontal tail surface area and control surface area.</p>	CO4	PO 1,2	10
	b)	<p>Write a short note on conic lofting. Describe conic shape parameter.</p>	CO4	PO 1,2	10
OR					
8	a)	<p>Explain the process of wetted area determination in aircraft design and the effect of wetted area on aerodynamic drag and overall aircraft performance.</p>	CO4	PO 1,2	15
	b)	<p>Explain the importance of control surface sizing in aircraft design.</p>	CO4	PO 1,2	5
UNIT - V					
9	a)	<p>Describe any five propulsion systems which are used in aircraft industry.</p>	CO4	PO 1,2	15
	b)	<p>Explain the thrust-drag book keeping concept in aircraft performance analysis.</p>	CO4	PO 1,2	5
OR					
10	a)	<p>Explain how maneuver loads, gust loads, and air loads on lifting surfaces contribute to structural design considerations.</p>	CO4	PO 1,2	15
	b)	<p>Explain the concept of installed thrust methodology.</p>	CO4	PO 1,2	5
