

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

January / February 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 22AS7PCACD

Max Marks: 100

Course: Aircraft Design

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

UNIT - I			CO	PO	Marks
1	a)	Describe three phases of Aircraft design. Describe the requirements and constraints for aircraft design.	CO1	PO1	10
	b)	Describe the steps for the gross weight estimation using the block diagram.	CO1	PO1	10
OR					
2	a)	Describe the expression of range for propeller-driven aircraft. Prove that, the maximum range will be achieved at $(Cl/Cd)_{max}$.	CO1	PO2	10
	b)	Describe the expression of range for jet-driven aircraft.	CO1	PO2	10
UNIT - II					
3	a)	Describe the desirable characteristics of an airfoil in aircraft design, highlighting the advantages and consequences of incorporating high camber.	CO2	PO1	10
	b)	Describe the laminar bucket and the disadvantages of laminar airfoils, along with the geometry and advantages of supercritical airfoils.	CO2	PO1	10
OR					
4	a)	Describe how airfoil thickness to chord ratio affects the aircraft design. Briefly explain “Fat” airfoil, “thinner” airfoil, and “very thin” airfoil.	CO2	PO1	10
	b)	Write down the advantages and undesirable consequences associated with (i) a higher wing aspect ratio and (ii) a higher wing sweep.	CO2	PO1	10
UNIT - III					
5	a)	“Wing loading and thrust-to-weight ratio are closely interconnected for most performance calculations”- Justify the statement with appropriate example	CO3	PO2	10
	b)	What do you understand by power loading and thrust loading? Derive the expression to relate power loading with thrust loading.	CO3	PO2	10
OR					

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

	6	a)	What do you mean by wing loading? Derive the expression for the wing loading for maximum endurance of jet-driven aircraft.	CO3	PO2	10
		b)	Write down the advantages and disadvantages associated with a higher thrust-to-weight ratio. Derive the expression for the wing loading for maximum endurance of propeller-driven aircraft.	CO3	PO2	10
UNIT - IV						
	7	a)	Write short notes on (i) fixed size engine and (ii) rubber engine.	CO4	PO1	10
		b)	Consider designing an aircraft that executes a normal mission profile consisting of takeoff, climb, cruise, and land. Describe the aircraft size estimation procedure with the help of an equation and block diagram when there is a provision of payload drop at some point during the cruise operation.	CO4	PO1	10
			OR			
	8	a)	Demonstrate the procedure for estimating the takeoff gross aircraft weight for the fixed engine when no negotiation is allowed in aircraft performance.	CO4	PO1	10
		b)	Based on the initial estimate of takeoff gross weight, demonstrate the aircraft wing, tail, fuselage, and control-surface sizing procedures. Mention all the important parameters you must concentrate on while calculating geometric sizing.	CO4	PO1	10
			UNIT - V			
	9	a)	Describe two major aerodynamic forces that you must concentrate on for aircraft design.	CO4	PO1	10
		b)	Explain the need for thrust-drag bookkeeping in aircraft design and briefly describe the installed thrust methodology.	CO4	PO1	10
			OR			
	10	a)	Write short notes on (i) maneuver loads, and (ii) gust loads. Use the appropriate diagrams to describe both the loads.	CO4	PO1	10
		b)	Describe air loads on the lifting surface and air loads due to control deflections.	CO4	PO1	10
