

|        |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|
| U.S.N. |  |  |  |  |  |  |  |  |
|--------|--|--|--|--|--|--|--|--|

# B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

## January / February 2025 Semester End Main Examinations

**Programme: B.E.**

**Semester: VII**

**Branch: Institutional Elective**

**Duration: 3 hrs.**

**Course Code: 22AS7OEATE**

**Max Marks: 100**

**Course: Applied Thermal Engineering**

**Instructions:** 1. Answer any FIVE full questions, choosing one full question from each unit.  
2. Missing data, if any, may be suitably assumed.

| <b>UNIT - I</b>   |    |                                                                                                       | <i>CO</i>  | <i>PO</i>  | <b>Marks</b> |
|-------------------|----|-------------------------------------------------------------------------------------------------------|------------|------------|--------------|
| 1                 | a) | Explain Herschel-Berkley model and Casson fluid model.                                                | <i>CO1</i> | <i>PO1</i> | <b>10</b>    |
|                   | b) | Explain the factors for thermal comfort.                                                              | <i>CO1</i> | <i>PO1</i> | <b>10</b>    |
| <b>OR</b>         |    |                                                                                                       |            |            |              |
| 2                 | a) | Explain:<br>i) Thermal Comfort and Basal metabolic rate<br>ii) Metabolic and Perfusion heat source    | <i>CO1</i> | <i>PO1</i> | <b>10</b>    |
|                   | b) | Explain the thermoregulation of body exposed to hot Environment.                                      | <i>CO1</i> | <i>PO1</i> | <b>10</b>    |
| <b>UNIT-II</b>    |    |                                                                                                       |            |            |              |
| 3                 | a) | With the help of neat sketch explain declination angle, Hour angle, latitude angle.                   | <i>CO2</i> | <i>PO1</i> | <b>10</b>    |
|                   | b) | With the help of neat sketch explain the working of Solar desalination plant.                         | <i>CO2</i> | <i>PO1</i> | <b>10</b>    |
| <b>OR</b>         |    |                                                                                                       |            |            |              |
| 4                 | a) | What are the different orientations and tracking modes in solar parabolic type of collectors?         | <i>CO2</i> | <i>PO1</i> | <b>08</b>    |
|                   | b) | Explain the performance analysis to design Solar flat type of collector.                              | <i>CO2</i> | <i>PO1</i> | <b>12</b>    |
| <b>UNIT - III</b> |    |                                                                                                       |            |            |              |
| 5                 | a) | Explain the nature of wind.                                                                           | <i>CO2</i> | <i>PO1</i> | <b>08</b>    |
|                   | b) | Classify wind energy conversion. What are the advantages and Disadvantages of wind energy conversion? | <i>CO2</i> | <i>PO1</i> | <b>12</b>    |
| <b>OR</b>         |    |                                                                                                       |            |            |              |

**Important Note:** Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

|  |    |    |                                                                                                              |     |     |           |
|--|----|----|--------------------------------------------------------------------------------------------------------------|-----|-----|-----------|
|  | 6  | a) | With the help of neat sketches explain the performance curve of three bladed wind turbine.                   | CO2 | PO1 | <b>10</b> |
|  |    | b) | What are the different theories of Lift generation?                                                          | CO2 | PO1 | <b>10</b> |
|  |    |    | <b>UNIT-IV</b>                                                                                               |     |     |           |
|  | 7  | a) | Explain the conduction type of cooling in chip carriers with the help of neat sketch.                        | CO3 | PO1 | <b>10</b> |
|  |    | b) | Classify and explain liquid cooling system in electronic component devices.                                  | CO3 | PO1 | <b>10</b> |
|  |    |    | <b>OR</b>                                                                                                    |     |     |           |
|  | 8  | a) | What is the thermal environment required in cooling of electronics component?                                | CO3 | PO1 | <b>08</b> |
|  |    | b) | Explain conduction cooling in printed circuit board and heat frame technique with the help of neat sketches. | CO3 | PO1 | <b>12</b> |
|  |    |    | <b>UNIT - V</b>                                                                                              |     |     |           |
|  | 9  | a) | With the help of neat sketch explain Fanno flow.                                                             | CO4 | PO1 | <b>10</b> |
|  |    | b) | How to avoid spillage in Supersonic flow? Explain the with help of suitable sketch.                          | CO4 | PO1 | <b>10</b> |
|  |    |    | <b>OR</b>                                                                                                    |     |     |           |
|  | 10 | a) | What are different length scales in turbulent flame propagation?                                             | CO4 | PO1 | <b>08</b> |
|  |    | b) | Explain physical nature in turbulent flow in flames.                                                         | CO4 | PO1 | <b>12</b> |

\*\*\*\*\*