

--	--	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

June 2025 Semester End Main Examinations

Programme: B.E.

Semester: VII

Branch: Aerospace Engineering

Duration: 3 hrs.

Course Code: 22AS7PEMLA

Max Marks: 100

Course: Machine Learning in Aerospace Engineering

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I			
			<i>CO</i>	<i>PO</i>	Marks	
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	Distinguish between supervised and unsupervised techniques with a suitable example for each.	<i>CO1</i>	<i>PO1</i>	8
		b)	Infer the characteristics of different types of ML techniques with a neat sketch.	<i>CO1</i>	<i>PO1</i>	6
		c)	Explain the importance of Stochastic Optimization with the help of an example.	<i>CO1</i>	<i>PO1</i>	6
OR						
	2	a)	Define machine learning. Explain how it differs from traditional programming using block diagrams.	<i>CO1</i>	<i>PO2</i>	6
		b)	Explain the concept of reinforcement learning and illustrate the interactions of its core components during the learning process with an example.	<i>CO1</i>	<i>PO2</i>	6
		c)	What are the implications of the advantages and disadvantages of deep learning for its adoption in real-world applications?	<i>CO1</i>	<i>PO2</i>	8
UNIT - II						
	3	a)	Explain the different types of support vector machines with a neat sketch.	<i>CO1</i>	<i>PO1</i>	6
		b)	How does principal component analysis help in reduction of the computational cost of optimizing aircraft wing shapes under varying flow conditions?	<i>CO1</i>	<i>PO1</i>	8
		c)	Outline the importance of sigmoid function in logistic regression.	<i>CO1</i>	<i>PO1</i>	6
OR						

	4	a)	What are soft margins in Support Vector Machines and how do we represent mathematically? Illustrate with an example.	CO1	PO1	10																												
		b)	A company recorded the following weather data of five days temperature in Fahrenheit scale.	CO1	PO2	10																												
			<table border="1"> <tr><td>Day(x)</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td></tr> <tr><td>Temperature(y)</td><td>30</td><td>70</td><td>50</td><td>80</td><td>60</td></tr> </table> <p>Apply the Simple Linear Regression to:</p> <ol style="list-style-type: none"> Find the linear regression equation for the data. Predict the temperature of Day 6 and Day 7 respectively. 	Day(x)	1	2	3	4	5	Temperature(y)	30	70	50	80	60																			
Day(x)	1	2	3	4	5																													
Temperature(y)	30	70	50	80	60																													
			UNIT - III																															
	5	a)	Illustrate the general structure of decision tree with suitable example.	CO2	PO1	5																												
		b)	Find the entropy of the given probabilities	CO2	PO2	5																												
			<table border="1"> <tr><td>P1</td><td>P2</td><td>P3</td><td>P4</td></tr> <tr><td>0.1</td><td>0.2</td><td>0.3</td><td>0.4</td></tr> </table>	P1	P2	P3	P4	0.1	0.2	0.3	0.4																							
P1	P2	P3	P4																															
0.1	0.2	0.3	0.4																															
		c)	Design a decision tree for the given dataset using the ID3 algorithm.	CO2	PO2	10																												
			<table border="1"> <thead> <tr><th>Instance</th><th>A1</th><th>A2</th><th>Classification</th></tr> </thead> <tbody> <tr><td>1</td><td>False</td><td>True</td><td>\$</td></tr> <tr><td>2</td><td>False</td><td>True</td><td>\$</td></tr> <tr><td>3</td><td>False</td><td>False</td><td>+</td></tr> <tr><td>4</td><td>True</td><td>False</td><td>\$</td></tr> <tr><td>5</td><td>True</td><td>True</td><td>+</td></tr> <tr><td>6</td><td>True</td><td>True</td><td>+</td></tr> </tbody> </table>	Instance	A1	A2	Classification	1	False	True	\$	2	False	True	\$	3	False	False	+	4	True	False	\$	5	True	True	+	6	True	True	+			
Instance	A1	A2	Classification																															
1	False	True	\$																															
2	False	True	\$																															
3	False	False	+																															
4	True	False	\$																															
5	True	True	+																															
6	True	True	+																															
			OR																															
	6	a)	Elucidate on different Hypothesis Space Search in Decision Tree Learning.	CO2	PO1	8																												
		b)	List down the attribute measures used by the ID3 algorithm to construct a decision tree.	CO2	PO1	8																												
		c)	Outline the pertinent issues involved in decision tree learning.	CO2	PO1	4																												
			UNIT - IV																															
	7	a)	Describe ANN with artificial Neuron.	CO2	PO1	6																												
		b)	Illustrate back propagation algorithm with an example.	CO2	PO2	14																												
			OR																															
	8	a)	Illustrate the neural network representation, highlighting the role of input, hidden, and output layers in problem-solving.	CO2	PO1	7																												
		b)	Elucidate on multilayer perceptrons (MLPs) and justify the statement “MLPs are more powerful than single layer perceptron”.	CO2	PO1	8																												

		c)	List and explain key challenges in training neural networks.	CO2	PO1	5
			UNIT - V			
	9	a)	Explain Naive Bayes Classifier with its advantage and disadvantages.	CO3	PO1	10
		b)	A diagnostic test has 99% accuracy, and 60% of people have Covid-19. If a patient tests positive, what is the probability they actually have the disease?	CO3	PO2	10
			OR			
	10	a)	Comprehend the Minimum Description Length (MDL) principle and discuss its application in model selection with an example.	CO3	PO1	8
		b)	Explain the working of the Gibbs algorithm in Bayesian learning. Highlight its computational aspects.	CO3	PO1	6
		c)	Differentiate between Maximum Likelihood Estimation (MLE) and Least-Squared Error hypotheses.	CO3	PO1	6
