

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

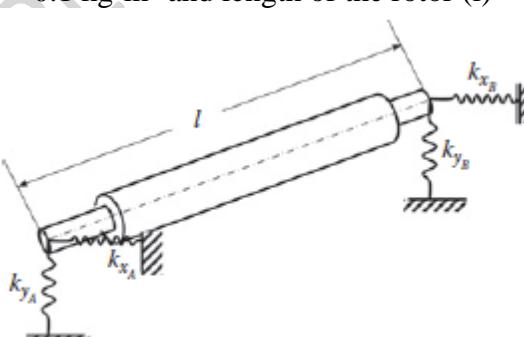
June 2025 Semester End Main Examinations

Programme: B.E.

Semester: 7th

Branch: Aerospace Engineering

Duration: 3 hrs.


Course Code: 22AS7PERDY/21AE7DERDY

Max Marks: 100

Course: Rotor dynamics

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

			UNIT - I		CO	PO	Marks
Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.	1	a)	A rotor has a mass of 10 kg and the operational speed of 100 ± 1 rad/s. What are the bounds of the effective stiffness of the shaft so that the critical speed does not fall within 5% of the operating speed? Assume that there is no damping the rotor system.	CO1	PO2	04	
		b)	Explain any three methods of attenuation of vibration.	CO1	PO1	06	
		c)	Derive the governing differential equation of motion and natural frequency of Jeffcott rotor model.	CO1	PO1	10	
		OR					
	2	a)	Derive the governing differential equation of motion and natural frequency of single degree of freedom damped free rotor model	CO1	PO1	08	
		b)	Derive the governing differential equation of motion and natural frequency of single degree of freedom Un-damped free and forced rotor model.	CO1	PO1	12	
UNIT - II							
	3	a)	Explain the influence of load between pivots versus load on pivot.	CO2	PO1	05	
		b)	Explain the failures in rolling contact bearing.	CO2	PO1	05	
		c)	Explain the influence of Number of Pads and influence of preload on the dynamic coefficients in tilt pad bearings.	CO2	PO1	10	
	OR						
	4	a)	Explain with neat sketches, which describe the three regimes of operation a fluid film bearing.	CO2	PO1	07	
		b)	List the types of fixed-geometry sleeve bearing and explain any two with neat sketches.	CO2	PO1	08	

	c)	Explain with a neat sketch i) Pressure dam bearings, ii) Rocker back tilt pad bearing, iii) Cross-coupling, iv) boundary friction, v) Lemon bore bearing.	CO2	PO1	05
		UNIT - III			
5	a)	Derive the governing equations for instability analysis due to rotary seals.	CO3	PO1	10
	b)	Explain the influence of the rotational speeds and pressure differences on the seal's dynamic coefficients.	CO3	PO1	10
		OR			
6	a)	Explain with a neat sketch invention of the pocket damper seal	CO3	PO1	06
	b)	Compute the advantages, disadvantages, and applications of rolling contact bearings.	CO3	PO1	08
	c)	Explain the effect of the L/D ratio on the seal's dynamic coefficients.	CO3	PO1	06
		UNIT - IV			
7	a)	Determine The four critical speeds of rigid rotor mounted on simple anisotropic springs as bearings.	CO4	PO1	10
	b)	Derive the gyroscopic moments equation for motion of a rotor mounted on two bearings.	CO4	PO1	10
		OR			
8	a)	Find the critical speeds of a rotor system as shown in Figure 8a. The bearing stiffness properties are $k_{xA} = 1.1$ kN/mm, $k_{yA} = 1.8$ kN/mm, $k_{xB} = 3.1$ kN/mm, and $k_{yB} = 3.8$ kN/mm. The disc has $m = 10$ kg and $I_d = 0.1$ kg-m ² and length of the rotor (l) = 1 m.	CO4	PO2	08
		Figure 8a.			
	b)	Explain the whirl directions with respect to the shaft spin frequency with neat sketches.	CO4	PO1	06
	c)	The rotor of a jet aeroplane engine is supported by two bearings 2.14 m apart. The rotor assembly including compressor, turbine and shaft has a mass of 688 kg. If C.G being situated at 0.92 m from the left bearing and has radius of gyration 0.229 m. Determine the maximum bearing force on the aeroplane when it undergoes a pullout on a 1830 m radius curve at a constant speed of aeroplane 960 km per hour and engine rotor speed of 10,000 rpm, including	CO4	PO2	06

		the effect of centrifugal force due to the pull out as well as gyroscopic effect.			
UNIT - V					
	9	a)	Illustrate the vibration-based identification of faults.	<i>CO5</i>	<i>PO1</i> 10
		b)	Explain with neat sketches, visual presentation of vibration measurements- waterfall and campbell diagram.	<i>CO5</i>	<i>PO1</i> 10
OR					
	10	a)	Write a note on the electrical noise.	<i>CO5</i>	<i>PO1</i> 04
		b)	Explain with neat sketches of vibration signature analysis.	<i>CO5</i>	<i>PO1</i> 08
		c)	Briefly explain run-out correction in vibration signal conditioning.	<i>CO5</i>	<i>PO1</i> 08

REAPPEAR EXAMS 2024-25