

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

February / March 2024 Semester End Main Examinations

Programme: B.E.

Semester: I / II

Branch: Computer Science Stream

Duration: 3 hrs.

Course Code: 22PH1BSPCS / 22PH2BSPCS

Max Marks: 100

Course: Applied Physics for Computer Science Stream

Instructions: 1. Answer any FIVE full questions, choosing one full question from each unit.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space = 8.85×10^{-12} F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

MODULE - I				CO	PO	Marks
1	a)	Derive an expression for the energy density of radiation at thermal equilibrium in terms of Einstein's coefficients.		<i>CO1</i>	<i>PO1</i>	08
	b)	What is numerical aperture? Derive an expression for the numerical aperture of an optical fiber.		<i>CO1</i>	<i>PO1</i>	08
	c)	The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of acceptance of an optical fiber when placed in the medium of refractive index 1.33.		<i>CO1</i>	<i>PO2</i>	04
OR						
2	a)	Discuss two general condition for LASER action. Explain the working of LASER barcode reader.		<i>CO1</i>	<i>PO1</i>	08
	b)	Discuss with a block diagram point-to-point optical fiber communication system. Mention the advantages of optical fiber communication system over other conventional communication system.		<i>CO1</i>	<i>PO1</i>	08
	c)	The average output power of a Laser beam of wavelength 700 nm is 12 mW. Find the number of photons emitted per second by the Laser source.		<i>CO1</i>	<i>PO2</i>	04
MODULE - II						
3	a)	Define phase velocity and group velocity and obtain the relation between them in terms of wavelength.		<i>CO1</i>	<i>PO1</i>	08
	b)	Apply Schrodinger's wave equation to a particle confined to one dimensional potential well of infinite height and hence obtain the expressions for eigen values and eigen functions.		<i>CO1</i>	<i>PO1</i>	08

	c)	A particle of mass $0.5 \text{ MeV}/c^2$ has a kinetic energy of 120 eV . Find its de-Broglie wavelength and group velocity, where c is the velocity of light.	CO1	PO2	04
		OR			
4	a)	Set up a time-independent Schrodinger's wave equation for a particle moving along X direction.	CO1	PO1	08
	b)	State Heisenberg's uncertainty principle and explain why the electron does not exist inside the nucleus using this principle.	CO1	PO1	08
	c)	An electron is bound in a one-dimensional potential well of width 0.5 \AA^0 , but of infinite wall height. Find its energy values in the ground state and also in the first two excited states.	CO1	PO2	04
		MODULE - III			
5	a)	What are the assumptions of quantum free electron theory? Explain any two merits of quantum free electron theory.	CO1	PO1	08
	b)	What is polarization in dielectrics? Describe the different polarization mechanisms with neat schematic diagrams.	CO1	PO1	08
	c)	Calculate the probability of an electron occupying an energy level 0.02 eV above the Fermi level at 200 K and 400 K in a material.	CO1	PO2	04
		MODULE - IV			
6	a)	What is Hall effect? Obtain an expression for Hall voltage in terms of Hall coefficient of a semiconductor.	CO1	PO1	08
	b)	What is Meissner effect? Classify superconductors into soft and hard superconductors by using M-H graphs.	CO1	PO1	08
	c)	For intrinsic Gallium arsenide, at room temperature electrical conductivity is $10^{-6} / \Omega \text{m}$. The electron and hole mobilities are $0.85 \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$ and $0.04 \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$, respectively. Compare the intrinsic carrier concentration at room temperature.	CO1	PO2	04
		MODULE - V			
7	a)	State Pauli's matrices and apply Pauli matrices on the states $ 0\rangle$ and $ 1\rangle$.	CO1	PO1	08
	b)	Describe the working of CNOT Gate and T gate, mentioning its matrix representation, circuit and truth table.	CO1	PO1	08
	c)	Show that Hadamard gate is Unitary.	CO1	PO2	04
