

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2025 Semester End Make-Up Examinations

Programme: B.E.

Semester: I

Branch: CSE/AI&ML/BT

Duration: 3 hrs.

Course Code: 22PH1BSPCS

Max Marks: 100

Course: Applied Physics for Computer Science Stream

Instructions: 1. Answer any FIVE full questions, choosing one full question from each Module.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Speed of light, $c = 3 \times 10^8$ m/s

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Permittivity of free space, $\epsilon_0 = 8.85 \times 10^{-12}$ F/m

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

MODULE - I			CO	PO	Marks
1	a)	Define numerical aperture in optical fiber. Show that the light gathering capacity of an optical fiber surrounded by air is equal to $\sqrt{n_1^2 - n_2^2}$. Where the terms have their usual meaning.	CO1	PO1	8
	b)	Discuss the general conditions for laser action. Explain the construction and working of semiconductor laser with suitable diagrams.	CO1	PO1	8
	c)	An optical fiber has a core material with refractive index 1.55 and its cladding material has a refractive index of 1.5. The light is launched into it in air. Calculate its N.A, and fractional refractive index change.	CO1	PO2	4
OR					
2	a)	If A & B are the Einstein coefficients, then show that $B_{21} = B_{12}$ where the notations have their usual meaning.	CO1	PO1	8
	b)	Define attenuation. Discuss the causes of signal attenuation in an optical fiber.	CO1	PO1	8
	c)	The transition to the ground state from upper state and lower energy states in a ruby laser result in emission of photons of wavelengths 6928 Å° and 6943 Å° respectively. Estimate the energy values of the two energy levels in eV and also their ratio of populations. Given T = 270 °C. Assume ground state energy = 0.	CO1	PO2	4

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

MODULE - II					
3	a)	Mention the properties of the wave function. Prove the non-existence of electron within the nucleus of an atom using Heisenberg's uncertainty principle.	<i>CO1</i>	<i>PO1</i>	8
	b)	Starting from the normalized wave function for a particle confined in a 1-D potential well, discuss the wave function, probability density and energy Eigen values for the ground and the first excited states.	<i>CO1</i>	<i>PO1</i>	8
	c)	Compare the kinetic energy of a photon with that of an electron when both are associated with a wavelength 0.2 nm.	<i>CO1</i>	<i>PO2</i>	4
OR					
4	a)	Define group and phase velocity. Deduce the relations of group velocity with particle velocity.	<i>CO1</i>	<i>PO1</i>	8
	b)	Describe the physical significance of Heisenberg's uncertainty principle. Setup the expression for 1-D time independent Schrodinger wave equation.	<i>CO1</i>	<i>PO1</i>	8
	c)	A particle of mass $0.55 \text{ MeV}/c^2$ has a kinetic energy of 70 eV. Calculate the de-Broglie wavelength and group velocity of the wave.	<i>CO1</i>	<i>PO2</i>	4
MODULE - III					
5	a)	Mention the assumptions of quantum free electron theory. Discuss the any two demerits of classical free electron theory.	<i>CO1</i>	<i>PO1</i>	8
	b)	Deduce an expression for electronic polarizability exhibited by a pure elemental dielectric material.	<i>CO1</i>	<i>PO1</i>	8
	c)	Find the electron density of a metal with Fermi energy 3 eV.	<i>CO1</i>	<i>PO2</i>	4
OR					
6	a)	Define Fermi factor and Fermi energy. Discuss Fermi factor for the cases $E < E_F$, $E > E_F$ at $T = 0 \text{ K}$ and $E = E_F$ at $T > 0 \text{ K}$ with neat illustration.	<i>CO1</i>	<i>PO1</i>	8
	b)	Derive an expression for internal field in one dimensional array of atoms in dielectric solids.	<i>CO1</i>	<i>PO1</i>	8
	c)	The dielectric constant of Helium at 0°C is 1.000074 . The density of atoms is 2.7×10^{25} atoms per m^3 . Calculate the dipole moment induced in each atom when the gas is in an electric field of $3 \times 10^4 \text{ V/m}$.	<i>CO1</i>	<i>PO2</i>	4

MODULE - IV					
7	a)	What is Meissner effect. Explain different types superconductors with example.	<i>CO1</i>	<i>PO1</i>	8
	b)	Derive an expression for the number of electrons per unit volume in the conduction band of a semiconductor, assuming the density of energy states in it.	<i>CO1</i>	<i>PO1</i>	8
	c)	For intrinsic gallium arsenide, the room temperature electrical resistivity is $10^{-6} \text{ } \Omega\text{-m}$, the electron and hole mobilities are respectively $0.85 \text{ m}^2/\text{Vs}$ and $0.04 \text{ m}^2/\text{Vs}$. Compute the intrinsic carrier concentration at room temperature.	<i>CO1</i>	<i>PO2</i>	4
OR					
8	a)	Discuss the phenomenon of Hall effect with neat sketch and hence deduce an expression for Hall voltage in terms of Hall coefficient in semiconductors.	<i>CO1</i>	<i>PO1</i>	8
	b)	Describe (a) BCS theory in superconductors (b) magnetically levitating vehicle.	<i>CO1</i>	<i>PO1</i>	8
	c)	Calculate the critical current for a wire of lead having a diameter of 1 mm at 5.2 K. Critical temperature for lead is 8.18 K and $H_0 = 6.5 \times 10^4 \text{ Am}^{-1}$	<i>CO1</i>	<i>PO2</i>	4
MODULE - V					
9	a)	What are the Pauli Matrices? Show their operations on $ 0\rangle$ and $ 1\rangle$ states.	<i>CO1</i>	<i>PO1</i>	8
	b)	Write the truth table, diagram and matrices for Toffoli gate and Hadamard gate.	<i>CO1</i>	<i>PO1</i>	8
	c)	A liner operator X operates such that $X 1\rangle = 0\rangle$. Find the matrix representation of X.	<i>CO1</i>	<i>PO2</i>	4
OR					
10	a)	Explain Moore's law and its end. Differentiate between classical and quantum computing.	<i>CO1</i>	<i>PO1</i>	8
	b)	Write the truth table, diagram and matrices for quantum T gate and controlled Z gate.	<i>CO1</i>	<i>PO1</i>	8
	c)	Show that $U = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{bmatrix}$ is unitary.	<i>CO1</i>	<i>PO2</i>	4
