

U.S.N.								
--------	--	--	--	--	--	--	--	--

B.M.S. College of Engineering, Bengaluru-560019

Autonomous Institute Affiliated to VTU

April 2023 Semester End Main Examinations

Programme: B.E.

Branch: ISE/AIML/CSDS/BT

Course Code: 22PH1BSPCS

Course: Applied Physics for Computer Science Stream

Semester: I

Duration: 3 hrs.

Max Marks: 100

Date: 08.04.2023

Instructions:

1. Answer any FIVE full questions, choosing one full question from each module.
2. Missing data, if any, may be suitably assumed.

Physical constants:

Mass of electron, $m_e = 9.1 \times 10^{-31}$ kg

Electronic charge, $e = 1.602 \times 10^{-19}$ C

Boltzmann constant, $k_B = 1.38 \times 10^{-23}$ J/K

Permittivity of free space = 8.85×10^{-12} F/m

Speed of light, $c = 3 \times 10^8$ m/s

Planck constant, $h = 6.626 \times 10^{-34}$ Js

Mass of neutron, $m_n = 1.67 \times 10^{-27}$ kg

Mass of proton, $m_p = 1.67 \times 10^{-27}$ kg

Important Note: Completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. Revealing of identification, appeal to evaluator will be treated as malpractice.

Module-I

- 1 a) Derive an expression for energy density at thermal equilibrium in terms of Einstein's coefficients. **08**
- b) Mention the characteristics of LASER. Explain the working of the LASER barcode reader with neat sketch. **08**
- c) The average output power of a LASER beam of wavelength 650 nm is 10 mw. Find the number of photons emitted per second by the LASER source. **04**

OR

- 2 a) Discuss the point-to-point fiber optic communication system. Mention any four advantages of optical fiber communication over the conventional communication system. **08**
- b) Discuss the different types of optical fibers with a neat diagram. **08**
- c) Optical fiber has a core of R.I. 1.5 and R.I. of cladding is 3% less than the core index. Calculate the numerical aperture and angle of acceptance. **04**

Module-II

- 3 a) Define phase velocity and group velocity and obtain the relation between them. **08**
- b) State Heisenberg's uncertainty principle and show that an electron does not exist inside the nucleus by this principle. **08**
- c) A quantum particle is confined to a one-dimensional potential well of width 'a' in its first excited state. What is the probability of finding the particle over an interval of 'a/2' marked symmetrically at the center of the well? **04**

OR

4	a) Set up a time-independent Schrodinger's wave equation for a particle moving along x- direction.	08
	b) Apply Schrodinger's wave equation to a particle confined to one dimensional potential well of infinite height and hence obtain the expressions for Eigen values and Eigen functions.	08
	c) Calculate the momentum and de Broglie wavelength of an electron having a kinetic energy of 1.5 Kev.	04

Module-III

5	a) Define Fermi energy and Fermi factor. Discuss the variation of the Fermi factor with temperature and energy.	08
	b) What are dielectrics? Arrive at an expression for internal field in the case of liquid and solid dielectrics.	08
	c) An elemental solid dielectric material has a polarizability of 7×10^{-40} Fm ² . Assuming the internal field to be Lorentz field, calculate the dielectric constant for the material if the material has 3×10^{28} atoms/m ³ .	04

Module-IV

6	a) Derive an expression for the electrical conductivity of an intrinsic semiconductor.	08
	b) Explain Meissner effect and hence classify superconductors into soft and hard superconductors by using M-H graphs.	08
	c) The Hall coefficient of a specimen of doped silicon is found to be 3.66×10^{-4} m ³ /c. The resistivity of the specimen is 8.93×10^{-3} Ωm. Find the mobility and density of the charge carrier, assuming single carrier conduction.	04

Module-V

7	a) Explain Moore's law. Elucidate the difference between classical and quantum computing.	08
	b) Describe the working of quantum NOT Gate, mentioning its matrix representation, circuit, and truth table. Apply Pauli matrices on the states $ 0\rangle$ and $ 1\rangle$.	08
	c) A linear operator X operates such that $X 0\rangle = 1\rangle$ and $X 1\rangle = 0\rangle$. Find the matrix representation of X.	04
